alpha-linolenic acid

Alpha-linolenic acid is a lipid of Fatty Acyls (FA) class. Alpha-linolenic acid is associated with abnormalities such as Coronary heart disease, abnormal fragmented structure, Arterial thrombosis and Subarachnoid Hemorrhage. The involved functions are known as Anabolism, Signal, Transcription, Genetic, Saturated and Regulation. Alpha-linolenic acid often locates in Blood, Body tissue, Plasma membrane, Hepatic and peroxisome. The associated genes with alpha-linolenic acid are FATE1 gene, volicitin, CYP2U1 gene, CYP1A2 gene and CYP2J2 gene. The related lipids are Fatty Acids, Dietary Fatty Acid, stearidonic acid and Fatty Acids, Nonesterified.

Cross Reference

Introduction

To understand associated biological information of alpha-linolenic acid, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with alpha-linolenic acid?

alpha-linolenic acid is suspected in Coronary heart disease, Arterial thrombosis, Subarachnoid Hemorrhage and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with alpha-linolenic acid

MeSH term MeSH ID Detail
Irritable Bowel Syndrome D043183 8 associated lipids
Overweight D050177 11 associated lipids
Atherosclerosis D050197 85 associated lipids
Carcinogenesis D063646 3 associated lipids
Per page 10 20 50 100 | Total 104

PubChem Associated disorders and diseases

What pathways are associated with alpha-linolenic acid

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with alpha-linolenic acid?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with alpha-linolenic acid?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with alpha-linolenic acid?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with alpha-linolenic acid?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with alpha-linolenic acid?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with alpha-linolenic acid

Download all related citations
Per page 10 20 50 100 | Total 2471
Authors Title Published Journal PubMed Link
Thamphiwatana S et al. In vivo treatment of Helicobacter pylori infection with liposomal linolenic acid reduces colonization and ameliorates inflammation. 2014 Proc. Natl. Acad. Sci. U.S.A. pmid:25422427
Alvarado-Gilis CA et al. Effects of feeding diets rich in α-linolenic acid and copper on performance, carcass characteristics, and fatty acid profiles of feedlot heifers. 2014 J. Anim. Sci. pmid:25414107
Tian E et al. Detection and molecular characterization of two FAD3 genes controlling linolenic acid content and development of allele-specific markers in yellow mustard (Sinapis alba). 2014 PLoS ONE pmid:24823372
Zhu G et al. Enhanced production of docosahexaenoic acid in mammalian cells. 2014 PLoS ONE pmid:24788769
Enos RT et al. Reducing the dietary omega-6:omega-3 utilizing α-linolenic acid; not a sufficient therapy for attenuating high-fat-diet-induced obesity development nor related detrimental metabolic and adipose tissue inflammatory outcomes. 2014 PLoS ONE pmid:24733548
Papanikolaou Y et al. U.S. adults are not meeting recommended levels for fish and omega-3 fatty acid intake: results of an analysis using observational data from NHANES 2003-2008. 2014 Nutr J pmid:24694001
Qin G et al. Evolution of the aroma volatiles of pear fruits supplemented with fatty acid metabolic precursors. 2014 Molecules pmid:25474290
Petzinger C et al. Conversion of α-linolenic acid to long-chain omega-3 fatty acid derivatives and alterations of HDL density subfractions and plasma lipids with dietary polyunsaturated fatty acids in Monk parrots (Myiopsitta monachus). 2014 J Anim Physiol Anim Nutr (Berl) pmid:23600588
Khodadoust S et al. Identification and determination of the fatty acid composition of Quercus brantii growing in southwestern Iran by GC-MS. 2014 Nat. Prod. Res. pmid:24499169
Hanke D et al. A diet high in α-linolenic acid and monounsaturated fatty acids attenuates hepatic steatosis and alters hepatic phospholipid fatty acid profile in diet-induced obese rats. 2013 Nov-Dec Prostaglandins Leukot. Essent. Fatty Acids pmid:24140006
Zheng JS et al. Intake of fish and marine n-3 polyunsaturated fatty acids and risk of breast cancer: meta-analysis of data from 21 independent prospective cohort studies. 2013 BMJ pmid:23814120
Almario RU and Karakas SE Lignan content of the flaxseed influences its biological effects in healthy men and women. 2013 J Am Coll Nutr pmid:23885993
Stivala S et al. Dietary α-linolenic acid increases the platelet count in ApoE-/- mice by reducing clearance. 2013 Blood pmid:23801636
Pan X et al. Identification of a pair of phospholipid:diacylglycerol acyltransferases from developing flax (Linum usitatissimum L.) seed catalyzing the selective production of trilinolenin. 2013 J. Biol. Chem. pmid:23824186
Nakashima R et al. Exposure to DEHP decreased four fatty acid levels in plasma of prepartum mice. 2013 Toxicology pmid:23619606
Wang DQ et al. [Alpha-linolenic acid improves insulin sensitivity in obese patients]. 2013 Zhonghua Yi Xue Za Zhi pmid:23648351
Oh HJ et al. Production of 10-hydroxy-12,15(Z,Z)-octadecadienoic acid from α-linolenic acid by permeabilized cells of recombinant Escherichia coli expressing the oleate hydratase gene of Stenotrophomonas maltophilia. 2013 Biotechnol. Lett. pmid:23690042
Schuchardt JP et al. Comparison of free serum oxylipin concentrations in hyper- vs. normolipidemic men. 2013 Prostaglandins Leukot. Essent. Fatty Acids pmid:23694766
Sengupta A and Ghosh M Protective effect of eicosapentaenoic acid-docosahexaenoic acid and alpha-linolenic acid rich phytosterol ester on brain antioxidant status and brain lipid composition in hypercholesterolemic rats. 2013 Indian J. Exp. Biol. pmid:23678545
Rao CV et al. Prevention of familial adenomatous polyp development in APC min mice and azoxymethane-induced colon carcinogenesis in F344 Rats by ω-3 fatty acid rich perilla oil. 2013 Nutr Cancer pmid:23682783
Hutchins AM et al. Daily flaxseed consumption improves glycemic control in obese men and women with pre-diabetes: a randomized study. 2013 Nutr Res pmid:23684438
Simon MC et al. Fatty acids modulate cytokine and chemokine secretion of stimulated human whole blood cultures in diabetes. 2013 Clin. Exp. Immunol. pmid:23600826
Foster M et al. Inflammation markers predict zinc transporter gene expression in women with type 2 diabetes mellitus. 2013 J. Nutr. Biochem. pmid:23643522
Mapiye C et al. Effects of feeding flaxseed or sunflower-seed in high-forage diets on beef production, quality and fatty acid composition. 2013 Meat Sci. pmid:23669875
Monge-Rojas R et al. Changes in dietary intake and food sources of saturated and cis and trans unsaturated fatty acids in Costa Rican adolescents: 1996 versus 2006. 2013 Nutrition pmid:23298971
Molkentin J Applicability of organic milk indicators to the authentication of processed products. 2013 Food Chem pmid:23199986
Ulas T et al. Does α-lipoic acid treatment play a role on oxidative stress and insulin resistance in overweight/obese patients? 2013 Int. J. Cardiol. pmid:23200266
Emery JA et al. Δ-6 Desaturase substrate competition: dietary linoleic acid (18:2n-6) has only trivial effects on α-linolenic acid (18:3n-3) bioconversion in the teleost rainbow trout. 2013 PLoS ONE pmid:23460861
Stamey Lanier J et al. Mammary uptake of fatty acids supplied by intravenous triacylglycerol infusion to lactating dairy cows. 2013 Lipids pmid:23504269
Saubeau G et al. Differential induction of oxylipin pathway in potato and tobacco cells by bacterial and oomycete elicitors. 2013 Plant Cell Rep. pmid:23479199
Cao AH et al. Composition of long chain polyunsaturated fatty acids (LC-PUFAs) in different encephalic regions and its association with behavior in spontaneous hypertensive rat (SHR). 2013 Brain Res. pmid:23811335
Moloney AP et al. Colour of fat, and colour, fatty acid composition and sensory characteristics of muscle from heifers offered alternative forages to grass silage in a finishing ration. 2013 Meat Sci. pmid:23806853
Zong G et al. Effects of flaxseed supplementation on erythrocyte fatty acids and multiple cardiometabolic biomarkers among Chinese with risk factors of metabolic syndrome. 2013 Eur J Nutr pmid:23179200
Lagarde M et al. Lipidomics of essential fatty acids and oxygenated metabolites. 2013 Mol Nutr Food Res pmid:23818385
Perga ME et al. Are cyanobacterial blooms trophic dead ends? 2013 Oecologia pmid:23129401
Gregory MK et al. Functional characterization of the chicken fatty acid elongases. 2013 J. Nutr. pmid:23173174
Tu WC et al. Dietary alpha-linolenic acid does not enhance accumulation of omega-3 long-chain polyunsaturated fatty acids in barramundi (Lates calcarifer). 2013 Comp. Biochem. Physiol. B, Biochem. Mol. Biol. pmid:23085323
Van Ba H et al. Significant influence of particular unsaturated fatty acids and pH on the volatile compounds in meat-like model systems. 2013 Meat Sci. pmid:23632107
Poudyal H et al. Effects of ALA, EPA and DHA in high-carbohydrate, high-fat diet-induced metabolic syndrome in rats. 2013 J. Nutr. Biochem. pmid:23026492
Yang YX et al. Effects of duodenal infusion of free α-linolenic acid on the plasma and milk proteome of lactating dairy cows. 2013 Animal pmid:23031206
Blanchard H et al. Comparative effects of well-balanced diets enriched in α-linolenic or linoleic acids on LC-PUFA metabolism in rat tissues. 2013 Prostaglandins Leukot. Essent. Fatty Acids pmid:23579035
Hawkins A et al. Effects of urea formaldehyde condensation polymer treatment of flaxseed on ruminal digestion and lactation in dairy cows. 2013 J. Dairy Sci. pmid:23548281
Botelho PB et al. Effect of Echium oil compared with marine oils on lipid profile and inhibition of hepatic steatosis in LDLr knockout mice. 2013 Lipids Health Dis pmid:23510369
Cedernaes J et al. Adipose tissue stearoyl-CoA desaturase 1 index is increased and linoleic acid is decreased in obesity-prone rats fed a high-fat diet. 2013 Lipids Health Dis pmid:23298201
Kastner DW and Van Wagoner DR Diet and atrial fibrillation: does α-linolenic acid, a plant derived essential fatty acid, have an impact? 2013 J Am Heart Assoc pmid:23525415
Fretts AM et al. Associations of plasma phospholipid and dietary alpha linolenic acid with incident atrial fibrillation in older adults: the Cardiovascular Health Study. 2013 J Am Heart Assoc pmid:23525429
Kälber T et al. Effect of feeding buckwheat and chicory silages on fatty acid profile and cheese-making properties of milk from dairy cows. 2013 J. Dairy Res. pmid:23253429
Monteiro J et al. Oils rich in α-linolenic acid independently protect against characteristics of fatty liver disease in the Δ6-desaturase null mouse. 2013 Can. J. Physiol. Pharmacol. pmid:23746194
Gillingham LG et al. Dietary oils and FADS1-FADS2 genetic variants modulate [13C]α-linolenic acid metabolism and plasma fatty acid composition. 2013 Am. J. Clin. Nutr. pmid:23221573
Liu M et al. Characterization and biological effects of di-hydroxylated compounds deriving from the lipoxygenation of ALA. 2013 J. Lipid Res. pmid:23740966
Gage SH et al. Functionalization of monodisperse iron oxide NPs and their properties as magnetically recoverable catalysts. 2013 Langmuir pmid:23234434
Lohner S et al. Gender differences in the long-chain polyunsaturated fatty acid status: systematic review of 51 publications. 2013 Ann. Nutr. Metab. pmid:23327902
Yu X et al. α-Linolenic acid attenuates doxorubicin-induced cardiotoxicity in rats through suppression of oxidative stress and apoptosis. 2013 Acta Biochim. Biophys. Sin. (Shanghai) pmid:23896563
MacIntosh BA et al. Low-n-6 and low-n-6 plus high-n-3 diets for use in clinical research. 2013 Br. J. Nutr. pmid:23328113
Egusa Saiga A and Nishimura T Antioxidative properties of peptides obtained from porcine myofibrillar proteins by a protease treatment in an Fe (II)-induced aqueous lipid peroxidation system. 2013 Biosci. Biotechnol. Biochem. pmid:24200778
Grindel A et al. Cheek cell fatty acids reflect n-3 PUFA in blood fractions during linseed oil supplementation: a controlled human intervention study. 2013 Lipids Health Dis pmid:24229084
Afitlhile M et al. A mutant of the Arabidopsis thaliana TOC159 gene accumulates reduced levels of linolenic acid and monogalactosyldiacylglycerol. 2013 Plant Physiol. Biochem. pmid:24184455
Ma T et al. Effect of droplet size on autoxidation rates of methyl linoleate and α-linolenate in an oil-in-water emulsion. 2013 J Oleo Sci pmid:24292352
Carey AN et al. The ability of walnut extract and fatty acids to protect against the deleterious effects of oxidative stress and inflammation in hippocampal cells. 2013 Nutr Neurosci pmid:23321679
Lau BY et al. Investigating the role of polyunsaturated fatty acids in bone development using animal models. 2013 Molecules pmid:24248147
Sonne DP and Knop FK Cardiovascular effects of alpha-linolenic acid--a possible role of glucagon-like peptide-1. 2013 Exp. Biol. Med. (Maywood) pmid:24174423
Hoque M et al. Oleic acid may be the key contributor in the BAMLET-induced erythrocyte hemolysis and tumoricidal action. 2013 PLoS ONE pmid:24039698
Moallem U et al. Dietary α-linolenic acid from flaxseed oil improved folliculogenesis and IVF performance in dairy cows, similar to eicosapentaenoic and docosahexaenoic acids from fish oil. 2013 Reproduction pmid:24062566
Arya E et al. Effect of Perilla frutescens fixed oil on experimental esophagitis in albino Wistar rats. 2013 Biomed Res Int pmid:24027769
Carotenuto F et al. A diet supplemented with ALA-rich flaxseed prevents cardiomyocyte apoptosis by regulating caveolin-3 expression. 2013 Cardiovasc. Res. pmid:24042018
Zhang W et al. Alpha-linolenic acid exerts an endothelial protective effect against high glucose injury via PI3K/Akt pathway. 2013 PLoS ONE pmid:23861910
Randall KM et al. Effects of dietary supplementation of coriander oil, in canola oil diets, on the metabolism of [1-(14)C] 18:3n-3 and [1-(14)C] 18:2n-6 in rainbow trout hepatocytes. 2013 Comp. Biochem. Physiol. B, Biochem. Mol. Biol. pmid:23867781
Warstedt K and Duchén K Increased linoleic acid/α-linolenic acid ratio in Swedish cord blood samples collected between 1985 and 2005. 2013 Eur J Nutr pmid:22584414
Oliva ME et al. Dietary Salba (Salvia hispanica L) seed rich in α-linolenic acid improves adipose tissue dysfunction and the altered skeletal muscle glucose and lipid metabolism in dyslipidemic insulin-resistant rats. 2013 Prostaglandins Leukot. Essent. Fatty Acids pmid:24120122
Patarra RF et al. Fatty acid composition of selected macrophytes. 2013 Nat. Prod. Res. pmid:22591127
Shen JH et al. Effect of α-linolenic acid on streptozotocin-induced diabetic retinopathy indices in vivo. 2013 Arch. Med. Res. pmid:24120388
Végner L et al. Experimental confirmation of new drug-target interactions predicted by Drug Profile Matching. 2013 J. Med. Chem. pmid:24088053
Dai J et al. Effects of polyunsaturated fatty acids on the growth of gastric cancer cells in vitro. 2013 Lipids Health Dis pmid:23663688
Ogata F et al. Study on analysis of waste edible oil with deterioration and removal of acid value, carbonyl value, and free fatty acid by a food additive (calcium silicate). 2013 J Oleo Sci pmid:23391535
Tu WC et al. Correlations between blood and tissue omega-3 LCPUFA status following dietary ALA intervention in rats. 2013 Prostaglandins Leukot. Essent. Fatty Acids pmid:22521090
Arm JP et al. Impact of botanical oils on polyunsaturated fatty acid metabolism and leukotriene generation in mild asthmatics. 2013 Lipids Health Dis pmid:24088297
Meijerink J et al. N-Acyl amines of docosahexaenoic acid and other n-3 polyunsatured fatty acids - from fishy endocannabinoids to potential leads. 2013 Br. J. Pharmacol. pmid:23088259
Chechetkin IR et al. Isolation and structure elucidation of linolipins C and D, complex oxylipins from flax leaves. 2013 Phytochemistry pmid:24042063
Vaezi R et al. Identification and functional characterization of genes encoding omega-3 polyunsaturated fatty acid biosynthetic activities from unicellular microalgae. 2013 Mar Drugs pmid:24351909
Brouwer IA et al. Effect of alpha linolenic acid supplementation on serum prostate specific antigen (PSA): results from the alpha omega trial. 2013 PLoS ONE pmid:24349086
Zhang W et al. Alpha-linolenic acid intake prevents endothelial dysfunction in high-fat diet-fed streptozotocin rats and underlying mechanisms. 2013 VASA pmid:24220118
Rodriguez-Leyva D et al. Potent antihypertensive action of dietary flaxseed in hypertensive patients. 2013 Hypertension pmid:24126178
Hoffmann I and Oliw EH Discovery of a linoleate 9S-dioxygenase and an allene oxide synthase in a fusion protein of Fusarium oxysporum. 2013 J. Lipid Res. pmid:24082064
Al-Bishri WM Favorable effects of flaxseed supplemented diet on liver and kidney functions in hypertensive Wistar rats. 2013 J Oleo Sci pmid:24005015
Alhazzaa R et al. Bioconversion of α-linolenic acid into n-3 long-chain polyunsaturated fatty acid in hepatocytes and ad hoc cell culture optimisation. 2013 PLoS ONE pmid:24040040
Niculescu MD et al. Perinatal manipulation of α-linolenic acid intake induces epigenetic changes in maternal and offspring livers. 2013 FASEB J. pmid:22997227
Meyer BJ et al. Assessing long-chain ω-3 polyunsaturated fatty acids: a tailored food-frequency questionnaire is better. 2013 Nutrition pmid:22929186
Shin JA et al. Preparation of recombined milk using modified butterfats containing α-linolenic acid. 2013 J. Food Sci. pmid:23278855
Yang D et al. Antioxidative activities of Ginkgo biloba extract on oil/water emulsion system prepared from an enzymatically modified lipid containing alpha-linolenic acid. 2013 J. Food Sci. pmid:23278764
Caligiuri SP et al. Dietary linoleic acid and α-linolenic acid differentially affect renal oxylipins and phospholipid fatty acids in diet-induced obese rats. 2013 J. Nutr. pmid:23902961
Shibata E et al. Free fatty acids inhibit protein tyrosine phosphatase 1B and activate Akt. 2013 Cell. Physiol. Biochem. pmid:24107614
Botsoglou E et al. Olive leaves (Olea europea L.) and α-tocopheryl acetate as feed antioxidants for improving the oxidative stability of α-linolenic acid-enriched eggs. 2013 J Anim Physiol Anim Nutr (Berl) pmid:22716021
Reinders I et al. Associations of serum n-3 and n-6 polyunsaturated fatty acids with echocardiographic measures among older adults: the Hoorn Study. 2013 Eur J Clin Nutr pmid:24084512
Smink W et al. Effect of intake of linoleic acid and α-linolenic acid levels on conversion into long-chain polyunsaturated fatty acids in backfat and in intramuscular fat of growing pigs. 2013 J Anim Physiol Anim Nutr (Berl) pmid:22463497
Gibson RA et al. Docosahexaenoic acid synthesis from alpha-linolenic acid is inhibited by diets high in polyunsaturated fatty acids. 2013 Prostaglandins Leukot. Essent. Fatty Acids pmid:22515943
Benbrook CM et al. Organic production enhances milk nutritional quality by shifting fatty acid composition: a United States-wide, 18-month study. 2013 PLoS ONE pmid:24349282
de Oliveira Otto MC et al. Circulating and dietary omega-3 and omega-6 polyunsaturated fatty acids and incidence of CVD in the Multi-Ethnic Study of Atherosclerosis. 2013 J Am Heart Assoc pmid:24351702
Rahman H et al. Development of low-linolenic acid Brassica oleracea lines through seed mutagenesis and molecular characterization of mutants. 2013 Theor. Appl. Genet. pmid:23475317
Wei M et al. Perilla oil and exercise decrease expressions of tumor necrosis factor-alpha, plasminogen activator inhibitor-1 and highly sensitive C-reactive protein in patients with hyperlipidemia. 2013 J Tradit Chin Med pmid:23789212
Esselburn KM et al. Intake of specific fatty acids and fat alters growth, health, and titers following vaccination in dairy calves. 2013 J. Dairy Sci. pmid:23810586