alpha-linolenic acid

Alpha-linolenic acid is a lipid of Fatty Acyls (FA) class. Alpha-linolenic acid is associated with abnormalities such as Coronary heart disease, abnormal fragmented structure, Arterial thrombosis and Subarachnoid Hemorrhage. The involved functions are known as Anabolism, Signal, Transcription, Genetic, Saturated and Regulation. Alpha-linolenic acid often locates in Blood, Body tissue, Plasma membrane, Hepatic and peroxisome. The associated genes with alpha-linolenic acid are FATE1 gene, volicitin, CYP2U1 gene, CYP1A2 gene and CYP2J2 gene. The related lipids are Fatty Acids, Dietary Fatty Acid, stearidonic acid and Fatty Acids, Nonesterified.

Cross Reference

Introduction

To understand associated biological information of alpha-linolenic acid, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with alpha-linolenic acid?

alpha-linolenic acid is suspected in Coronary heart disease, Arterial thrombosis, Subarachnoid Hemorrhage and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with alpha-linolenic acid

MeSH term MeSH ID Detail
Birth Weight D001724 23 associated lipids
Cystic Fibrosis D003550 65 associated lipids
Hypertension D006973 115 associated lipids
Dermatitis D003872 30 associated lipids
Diabetic Angiopathies D003925 20 associated lipids
Ventricular Fibrillation D014693 16 associated lipids
Bronchial Spasm D001986 18 associated lipids
Hyperlipidemias D006949 73 associated lipids
Coronary Artery Disease D003324 47 associated lipids
Encephalomyelitis, Autoimmune, Experimental D004681 26 associated lipids
Dermatitis, Atopic D003876 19 associated lipids
Vitamin E Deficiency D014811 29 associated lipids
Adenoma D000236 40 associated lipids
Learning Disorders D007859 11 associated lipids
Retinitis Pigmentosa D012174 6 associated lipids
Exocrine Pancreatic Insufficiency D010188 6 associated lipids
Paraplegia D010264 8 associated lipids
Zellweger Syndrome D015211 39 associated lipids
Atrial Fibrillation D001281 16 associated lipids
Vitamin B 6 Deficiency D026681 10 associated lipids
Aortic Diseases D001018 11 associated lipids
Atherosclerosis D050197 85 associated lipids
Metabolic Syndrome D024821 44 associated lipids
Insulin Resistance D007333 99 associated lipids
Deficiency Diseases D003677 12 associated lipids
Pregnancy Complications D011248 19 associated lipids
Cat Diseases D002371 12 associated lipids
Overweight D050177 11 associated lipids
Adenomatous Polyposis Coli D011125 16 associated lipids
Death, Sudden, Cardiac D016757 12 associated lipids
Tachycardia, Ventricular D017180 9 associated lipids
Long QT Syndrome D008133 10 associated lipids
Retinal Degeneration D012162 9 associated lipids
Malaria, Falciparum D016778 22 associated lipids
Retinoblastoma D012175 12 associated lipids
Hyperlipidemia, Familial Combined D006950 9 associated lipids
Neurotoxicity Syndromes D020258 34 associated lipids
Irritable Bowel Syndrome D043183 8 associated lipids
Community-Acquired Infections D017714 8 associated lipids
Sebaceous Gland Neoplasms D012626 2 associated lipids
Hearing Loss, High-Frequency D006316 1 associated lipids
Night Blindness D009755 1 associated lipids
Otorhinolaryngologic Neoplasms D010039 2 associated lipids
Spinal Cord Ischemia D020760 2 associated lipids
Mental Fatigue D005222 3 associated lipids
Depression, Postpartum D019052 3 associated lipids
Torsades de Pointes D016171 2 associated lipids
Dyskinesias D020820 3 associated lipids
Aging, Premature D019588 1 associated lipids
Insect Bites and Stings D007299 4 associated lipids
Per page 10 20 50 100 | Total 104

PubChem Associated disorders and diseases

What pathways are associated with alpha-linolenic acid

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with alpha-linolenic acid?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with alpha-linolenic acid?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with alpha-linolenic acid?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with alpha-linolenic acid?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with alpha-linolenic acid?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with alpha-linolenic acid

Download all related citations
Per page 10 20 50 100 | Total 2471
Authors Title Published Journal PubMed Link
Nieman DC et al. Chia seed supplementation and disease risk factors in overweight women: a metabolomics investigation. 2012 J Altern Complement Med pmid:22830971
Santos FS et al. Status of cis and trans fatty acids in Brazilian adolescent mothers and their newborns. 2012 J Pediatr Adolesc Gynecol pmid:22840939
de Freitas JM et al. Influence of cellular fatty acid composition on the response of Saccharomyces cerevisiae to hydrostatic pressure stress. 2012 FEMS Yeast Res. pmid:22846157
Ivan M et al. Rumen fermentation and microbial population in lactating dairy cows receiving diets containing oilseeds rich in C-18 fatty acids. 2013 Br. J. Nutr. pmid:22850225
Harland DR et al. Acute effects of prostaglandin E1 and E2 on vascular reactivity and blood flow in situ in the chick chorioallantoic membrane. 2012 Aug-Sep Prostaglandins Leukot. Essent. Fatty Acids pmid:22858445
Shinohara N et al. jacaric acid, a linolenic acid isomer with a conjugated triene system, reduces stearoyl-CoA desaturase expression in liver of mice. 2012 J Oleo Sci pmid:22864514
Román Á et al. Contribution of the different omega-3 fatty acid desaturase genes to the cold response in soybean. 2012 J. Exp. Bot. pmid:22865909
Huan M et al. In vivo anti-tumor activity of a new doxorubicin conjugate via α-linolenic acid. 2012 Biosci. Biotechnol. Biochem. pmid:22878199
Evans SJ et al. Association of plasma ω-3 and ω-6 lipids with burden of disease measures in bipolar subjects. 2012 J Psychiatr Res pmid:22884424
Pan H et al. Alpha-linolenic acid is a potent neuroprotective agent against soman-induced neuropathology. 2012 Neurotoxicology pmid:22884490
Delplanque B et al. A dairy fat matrix providing alpha-linolenic acid (ALA) is better than a vegetable fat mixture to increase brain DHA accretion in young rats. 2013 Prostaglandins Leukot. Essent. Fatty Acids pmid:22884780
Griffin BA Goldilocks and the three bonds: new evidence for the conditional benefits of dietary α-linolenic acid in treating cardiovascular risk in the metabolic syndrome. 2012 Br. J. Nutr. pmid:22894910
Baxheinrich A et al. Effects of a rapeseed oil-enriched hypoenergetic diet with a high content of α-linolenic acid on body weight and cardiovascular risk profile in patients with the metabolic syndrome. 2012 Br. J. Nutr. pmid:22894911
Nam KH and Yoshihara T Interactions among LOX metabolites regulate temperature-mediated flower bud formation in morning glory (Pharbitis nil). 2012 J. Plant Physiol. pmid:22902207
Moallem U et al. Transfer rate of α-linolenic acid from abomasally infused flaxseed oil into milk fat and the effects on milk fatty acid composition in dairy cows. 2012 J. Dairy Sci. pmid:22916932
Yang G et al. Duodenal infusion of α-linolenic acid affects fatty acid metabolism in the mammary gland of lactating dairy cows. 2012 J. Dairy Sci. pmid:22921622
Kartikasari LR et al. Dietary alpha-linolenic acid enhances omega-3 long chain polyunsaturated fatty acid levels in chicken tissues. 2012 Oct-Nov Prostaglandins Leukot. Essent. Fatty Acids pmid:22925778
Meyer BJ et al. Assessing long-chain ω-3 polyunsaturated fatty acids: a tailored food-frequency questionnaire is better. 2013 Nutrition pmid:22929186
Gaquerel E et al. Nicotiana attenuata α-DIOXYGENASE1 through its production of 2-hydroxylinolenic acid is required for intact plant defense expression against attack from Manduca sexta larvae. 2012 New Phytol. pmid:22937952
Wilk JB et al. Plasma and dietary omega-3 fatty acids, fish intake, and heart failure risk in the Physicians' Health Study. 2012 Am. J. Clin. Nutr. pmid:22952185
Hughes BH et al. Oxidative stability and consumer acceptance of fish oil fortified nutrition bars. 2012 J. Food Sci. pmid:22957916
Saha SS et al. Synergistic effect of conjugated linolenic acid isomers against induced oxidative stress, inflammation and erythrocyte membrane disintegrity in rat model. 2012 Biochim. Biophys. Acta pmid:22967758
Umesha SS and Naidu KA Vegetable oil blends with α-linolenic acid rich Garden cress oil modulate lipid metabolism in experimental rats. 2012 Food Chem pmid:22980881
Niculescu MD et al. Perinatal manipulation of α-linolenic acid intake induces epigenetic changes in maternal and offspring livers. 2013 FASEB J. pmid:22997227
Lerch S et al. Rapeseed or linseed in grass-based diets: effects on conjugated linoleic and conjugated linolenic acid isomers in milk fat from Holstein cows over 2 consecutive lactations. 2012 J. Dairy Sci. pmid:22999291
Poudyal H et al. Effects of ALA, EPA and DHA in high-carbohydrate, high-fat diet-induced metabolic syndrome in rats. 2013 J. Nutr. Biochem. pmid:23026492
Yang YX et al. Effects of duodenal infusion of free α-linolenic acid on the plasma and milk proteome of lactating dairy cows. 2013 Animal pmid:23031206
Kiernan M et al. The effect of the in vitro supplementation of exogenous long-chain fatty acids on bovine sperm cell function. 2013 Reprod. Fertil. Dev. pmid:23036717
Vedtofte MS et al. The role of essential fatty acids in the control of coronary heart disease. 2012 Curr Opin Clin Nutr Metab Care pmid:23037902
Fang XL et al. Roles of α-linolenic acid on IGF-I secretion and GH/IGF system gene expression in porcine primary hepatocytes. 2012 Mol. Biol. Rep. pmid:23053988
He ML et al. Triticale dried distillers' grain increases alpha-linolenic acid in subcutaneous fat of beef cattle fed oilseeds. 2012 Lipids pmid:23054550
Kim N and Choe E Singlet oxygen-related photooxidative stability and antioxidant changes of diacylglycerol-rich oil derived from mixture of olive and perilla oil. 2012 J. Food Sci. pmid:23057833
Macášek J et al. Plasma fatty acid composition in patients with pancreatic cancer: correlations to clinical parameters. 2012 Nutr Cancer pmid:23061902
Vanden Heuvel JP et al. Mechanistic examination of walnuts in prevention of breast cancer. 2012 Nutr Cancer pmid:23061909
Kim DH et al. Gamma linolenic acid exerts anti-inflammatory and anti-fibrotic effects in diabetic nephropathy. 2012 Yonsei Med. J. pmid:23074118
Pan A et al. α-Linolenic acid and risk of cardiovascular disease: a systematic review and meta-analysis. 2012 Am. J. Clin. Nutr. pmid:23076616
Tu WC et al. Dietary alpha-linolenic acid does not enhance accumulation of omega-3 long-chain polyunsaturated fatty acids in barramundi (Lates calcarifer). 2013 Comp. Biochem. Physiol. B, Biochem. Mol. Biol. pmid:23085323
Meijerink J et al. N-Acyl amines of docosahexaenoic acid and other n-3 polyunsatured fatty acids - from fishy endocannabinoids to potential leads. 2013 Br. J. Pharmacol. pmid:23088259
Han SN et al. Novel soybean oils differing in fatty acid composition alter immune functions of moderately hypercholesterolemic older adults. 2012 J. Nutr. pmid:23096013
Ghisolfi J et al. Nutrient intakes of children aged 1-2 years as a function of milk consumption, cows' milk or growing-up milk. 2013 Public Health Nutr pmid:23098567
Yan W et al. Effect of oral ALA supplementation on oxidative stress and insulin sensitivity among overweight/obese adults: a double-blinded, randomized, controlled, cross-over intervention trial. 2013 Int. J. Cardiol. pmid:23102606
Walker CG et al. Stearidonic acid as a supplemental source of ω-3 polyunsaturated fatty acids to enhance status for improved human health. 2013 Nutrition pmid:23102888
Sugasini D and Lokesh BR Uptake of α-linolenic acid and its conversion to long chain omega-3 fatty acids in rats fed microemulsions of linseed oil. 2012 Lipids pmid:23104428
Gutla PV et al. Modulation of plant TPC channels by polyunsaturated fatty acids. 2012 J. Exp. Bot. pmid:23105130
Jung DM et al. Chemical properties and oxidative stability of perilla oils obtained from roasted perilla seeds as affected by extraction methods. 2012 J. Food Sci. pmid:23106331
Garcia CV et al. Characterisation of bound volatile compounds of a low flavour kiwifruit species: Actinidia eriantha. 2012 Food Chem pmid:23107675
Pereira H et al. Polyunsaturated Fatty acids of marine macroalgae: potential for nutritional and pharmaceutical applications. 2012 Mar Drugs pmid:23118712
Perga ME et al. Are cyanobacterial blooms trophic dead ends? 2013 Oecologia pmid:23129401
Botsoglou E et al. Effect of supplementation of the laying hen diet with olive leaves (Olea europea L.) on lipid oxidation and fatty acid profile of α-linolenic acid enriched eggs during storage. 2012 Br. Poult. Sci. pmid:23130586
Zhao T et al. Impact of roasting on the chemical composition and oxidative stability of perilla oil. 2012 J. Food Sci. pmid:23140339
Beck JJ et al. Generation of the volatile spiroketals conophthorin and chalcogran by fungal spores on polyunsaturated fatty acids common to almonds and pistachios. 2012 J. Agric. Food Chem. pmid:23153034
Yang Z and Huffman SL Modelling linoleic acid and α-linolenic acid requirements for infants and young children in developing countries. 2013 Matern Child Nutr pmid:23167585
Wang Z et al. De novo characterization of the banana root transcriptome and analysis of gene expression under Fusarium oxysporum f. sp. Cubense tropical race 4 infection. 2012 BMC Genomics pmid:23170772
Gregory MK et al. Functional characterization of the chicken fatty acid elongases. 2013 J. Nutr. pmid:23173174
Zong G et al. Effects of flaxseed supplementation on erythrocyte fatty acids and multiple cardiometabolic biomarkers among Chinese with risk factors of metabolic syndrome. 2013 Eur J Nutr pmid:23179200
Barrett E et al. Bifidobacterium breve with α-linolenic acid and linoleic acid alters fatty acid metabolism in the maternal separation model of irritable bowel syndrome. 2012 PLoS ONE pmid:23185248
Molkentin J Applicability of organic milk indicators to the authentication of processed products. 2013 Food Chem pmid:23199986
Ulas T et al. Does α-lipoic acid treatment play a role on oxidative stress and insulin resistance in overweight/obese patients? 2013 Int. J. Cardiol. pmid:23200266
Gillingham LG et al. Dietary oils and FADS1-FADS2 genetic variants modulate [13C]α-linolenic acid metabolism and plasma fatty acid composition. 2013 Am. J. Clin. Nutr. pmid:23221573
Coles L et al. A model to predict the ATP equivalents of macronutrients absorbed from food. 2013 Food Funct pmid:23233079
Gage SH et al. Functionalization of monodisperse iron oxide NPs and their properties as magnetically recoverable catalysts. 2013 Langmuir pmid:23234434
Petrogianni M et al. Additional benefit in CVD risk indices derived from the consumption of fortified milk when combined with a lifestyle intervention. 2014 Public Health Nutr pmid:23249766
Kälber T et al. Effect of feeding buckwheat and chicory silages on fatty acid profile and cheese-making properties of milk from dairy cows. 2013 J. Dairy Res. pmid:23253429
Wang X et al. Transcriptome analysis of Sacha Inchi (Plukenetia volubilis L.) seeds at two developmental stages. 2012 BMC Genomics pmid:23256450
Yang D et al. Antioxidative activities of Ginkgo biloba extract on oil/water emulsion system prepared from an enzymatically modified lipid containing alpha-linolenic acid. 2013 J. Food Sci. pmid:23278764
Shin JA et al. Preparation of recombined milk using modified butterfats containing α-linolenic acid. 2013 J. Food Sci. pmid:23278855
Pany S et al. PKC activation by resveratrol derivatives with unsaturated aliphatic chain. 2012 PLoS ONE pmid:23285216
Azrad M et al. Prostatic alpha-linolenic acid (ALA) is positively associated with aggressive prostate cancer: a relationship which may depend on genetic variation in ALA metabolism. 2012 PLoS ONE pmid:23285256
Cedernaes J et al. Adipose tissue stearoyl-CoA desaturase 1 index is increased and linoleic acid is decreased in obesity-prone rats fed a high-fat diet. 2013 Lipids Health Dis pmid:23298201
Monge-Rojas R et al. Changes in dietary intake and food sources of saturated and cis and trans unsaturated fatty acids in Costa Rican adolescents: 1996 versus 2006. 2013 Nutrition pmid:23298971
Yan W et al. Reply to manuscript IJC-D-12-04197 entitled "Does alpha-lipoic acid treatment play a role on oxidative stress and insulin resistance in overweight/obese patients?" by MD Turgay Ulas. 2013 Int. J. Cardiol. pmid:23313466
Carey AN et al. The ability of walnut extract and fatty acids to protect against the deleterious effects of oxidative stress and inflammation in hippocampal cells. 2013 Nutr Neurosci pmid:23321679
Nozue T et al. Effects of statins on serum n-3 to n-6 polyunsaturated fatty acid ratios in patients with coronary artery disease. 2013 J. Cardiovasc. Pharmacol. Ther. pmid:23324995
Lohner S et al. Gender differences in the long-chain polyunsaturated fatty acid status: systematic review of 51 publications. 2013 Ann. Nutr. Metab. pmid:23327902
MacIntosh BA et al. Low-n-6 and low-n-6 plus high-n-3 diets for use in clinical research. 2013 Br. J. Nutr. pmid:23328113
Zhao ML et al. Enzymatic production of zero-trans plastic fat rich in α-linolenic acid and medium-chain fatty acids from highly hydrogenated soybean oil, Cinnamomum camphora seed oil, and perilla oil by lipozyme TL IM. 2013 J. Agric. Food Chem. pmid:23350869
Kanazawa A et al. Relationship between essential fatty acid requirements of aquatic animals and the capacity for bioconversion of linolenic acid to highly unsaturated fatty acids. 1979 Comp. Biochem. Physiol., B pmid:233802
Ogata F et al. Study on analysis of waste edible oil with deterioration and removal of acid value, carbonyl value, and free fatty acid by a food additive (calcium silicate). 2013 J Oleo Sci pmid:23391535
Zhang G et al. [Effects of fatty acids on proliferation and differentiation of myoblast]. 2012 Wei Sheng Yan Jiu pmid:23424861
Turk HF et al. Inhibitory effects of omega-3 fatty acids on injury-induced epidermal growth factor receptor transactivation contribute to delayed wound healing. 2013 Am. J. Physiol., Cell Physiol. pmid:23426968
Katrangi W et al. Interactions of linoleic and alpha-linolenic acids in the development of fatty acid alterations in cystic fibrosis. 2013 Lipids pmid:23440519
Tsuzuki W Inconsistencies in a highly polar capillary gas chromatography column and necessity of column performance checks for trans fatty acid measurement. 2012 Nov-Dec J AOAC Int pmid:23451392
Emery JA et al. Δ-6 Desaturase substrate competition: dietary linoleic acid (18:2n-6) has only trivial effects on α-linolenic acid (18:3n-3) bioconversion in the teleost rainbow trout. 2013 PLoS ONE pmid:23460861
Rahman H et al. Development of low-linolenic acid Brassica oleracea lines through seed mutagenesis and molecular characterization of mutants. 2013 Theor. Appl. Genet. pmid:23475317
Saubeau G et al. Differential induction of oxylipin pathway in potato and tobacco cells by bacterial and oomycete elicitors. 2013 Plant Cell Rep. pmid:23479199
Stamey Lanier J et al. Mammary uptake of fatty acids supplied by intravenous triacylglycerol infusion to lactating dairy cows. 2013 Lipids pmid:23504269
Yi LT et al. Essential oil of Perilla frutescens-induced change in hippocampal expression of brain-derived neurotrophic factor in chronic unpredictable mild stress in mice. 2013 J Ethnopharmacol pmid:23506995
Botelho PB et al. Effect of Echium oil compared with marine oils on lipid profile and inhibition of hepatic steatosis in LDLr knockout mice. 2013 Lipids Health Dis pmid:23510369
Kastner DW and Van Wagoner DR Diet and atrial fibrillation: does α-linolenic acid, a plant derived essential fatty acid, have an impact? 2013 J Am Heart Assoc pmid:23525415
Fretts AM et al. Associations of plasma phospholipid and dietary alpha linolenic acid with incident atrial fibrillation in older adults: the Cardiovascular Health Study. 2013 J Am Heart Assoc pmid:23525429
Hawkins A et al. Effects of urea formaldehyde condensation polymer treatment of flaxseed on ruminal digestion and lactation in dairy cows. 2013 J. Dairy Sci. pmid:23548281
Blanchard H et al. Comparative effects of well-balanced diets enriched in α-linolenic or linoleic acids on LC-PUFA metabolism in rat tissues. 2013 Prostaglandins Leukot. Essent. Fatty Acids pmid:23579035
Petzinger C et al. Conversion of α-linolenic acid to long-chain omega-3 fatty acid derivatives and alterations of HDL density subfractions and plasma lipids with dietary polyunsaturated fatty acids in Monk parrots (Myiopsitta monachus). 2014 J Anim Physiol Anim Nutr (Berl) pmid:23600588
Simon MC et al. Fatty acids modulate cytokine and chemokine secretion of stimulated human whole blood cultures in diabetes. 2013 Clin. Exp. Immunol. pmid:23600826
Nakashima R et al. Exposure to DEHP decreased four fatty acid levels in plasma of prepartum mice. 2013 Toxicology pmid:23619606
Van Ba H et al. Significant influence of particular unsaturated fatty acids and pH on the volatile compounds in meat-like model systems. 2013 Meat Sci. pmid:23632107
Ponnampalam EN et al. Health beneficial long chain omega-3 fatty acid levels in Australian lamb managed under extensive finishing systems. 2014 Meat Sci. pmid:23643471
Foster M et al. Inflammation markers predict zinc transporter gene expression in women with type 2 diabetes mellitus. 2013 J. Nutr. Biochem. pmid:23643522
Wang DQ et al. [Alpha-linolenic acid improves insulin sensitivity in obese patients]. 2013 Zhonghua Yi Xue Za Zhi pmid:23648351
Dai J et al. Effects of polyunsaturated fatty acids on the growth of gastric cancer cells in vitro. 2013 Lipids Health Dis pmid:23663688