alpha-linolenic acid

Alpha-linolenic acid is a lipid of Fatty Acyls (FA) class. Alpha-linolenic acid is associated with abnormalities such as Coronary heart disease, abnormal fragmented structure, Arterial thrombosis and Subarachnoid Hemorrhage. The involved functions are known as Anabolism, Signal, Transcription, Genetic, Saturated and Regulation. Alpha-linolenic acid often locates in Blood, Body tissue, Plasma membrane, Hepatic and peroxisome. The associated genes with alpha-linolenic acid are FATE1 gene, volicitin, CYP2U1 gene, CYP1A2 gene and CYP2J2 gene. The related lipids are Fatty Acids, Dietary Fatty Acid, stearidonic acid and Fatty Acids, Nonesterified.

Cross Reference

Introduction

To understand associated biological information of alpha-linolenic acid, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with alpha-linolenic acid?

alpha-linolenic acid is suspected in Coronary heart disease, Arterial thrombosis, Subarachnoid Hemorrhage and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with alpha-linolenic acid

MeSH term MeSH ID Detail
Inflammation D007249 119 associated lipids
Colitis D003092 69 associated lipids
Colonic Neoplasms D003110 161 associated lipids
Diabetes Mellitus, Type 1 D003922 56 associated lipids
Diabetes Mellitus, Type 2 D003924 87 associated lipids
Diabetic Nephropathies D003928 39 associated lipids
Cattle Diseases D002418 24 associated lipids
Fatty Liver D005234 48 associated lipids
Diabetes Mellitus, Experimental D003921 85 associated lipids
Body Weight D001835 333 associated lipids
Per page 10 20 50 100 | Total 104

PubChem Associated disorders and diseases

What pathways are associated with alpha-linolenic acid

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with alpha-linolenic acid?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with alpha-linolenic acid?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with alpha-linolenic acid?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with alpha-linolenic acid?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with alpha-linolenic acid?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with alpha-linolenic acid

Download all related citations
Per page 10 20 50 100 | Total 2471
Authors Title Published Journal PubMed Link
Matravadia S et al. LA and ALA prevent glucose intolerance in obese male rats without reducing reactive lipid content, but cause tissue-specific changes in fatty acid composition. 2016 Am. J. Physiol. Regul. Integr. Comp. Physiol. pmid:26764053
López-Luna P et al. Fate of orally administered radioactive fatty acids in the late-pregnant rat. 2016 Am. J. Physiol. Endocrinol. Metab. pmid:26714850
Li T et al. Defense priming by non-jasmonate producing fatty acids in maize (Zea mays). 2016 Plant Signal Behav pmid:27763804
Kjær MA et al. Regulation of the Omega-3 Fatty Acid Biosynthetic Pathway in Atlantic Salmon Hepatocytes. 2016 PLoS ONE pmid:27973547
Cao X et al. Transcriptional Responses and Gentiopicroside Biosynthesis in Methyl Jasmonate-Treated Gentiana macrophylla Seedlings. 2016 PLoS ONE pmid:27851826
Wolters M et al. Associations of Whole Blood n-3 and n-6 Polyunsaturated Fatty Acids with Blood Pressure in Children and Adolescents - Results from the IDEFICS/I.Family Cohort. 2016 PLoS ONE pmid:27806134
Demorest ZL et al. Direct stacking of sequence-specific nuclease-induced mutations to produce high oleic and low linolenic soybean oil. 2016 BMC Plant Biol. pmid:27733139
Li XZ et al. Dietary linseed oil with or without malate increases conjugated linoleic acid and oleic acid in milk fat and and gene expression in mammary gland and milk somatic cells of lactating goats. 2016 J. Anim. Sci. pmid:27695785
Lee Y et al. Alpha-linolenic acid treatment during oocyte maturation enhances embryonic development by influencing mitogen-activated protein kinase activity and intraoocyte glutathione content in pigs. 2016 J. Anim. Sci. pmid:27695771
Chen T et al. Perilla Oil Supplementation Ameliorates High-Fat/High-Cholesterol Diet Induced Nonalcoholic Fatty Liver Disease in Rats via Enhanced Fecal Cholesterol and Bile Acid Excretion. 2016 Biomed Res Int pmid:27642591
Masoko P et al. Isolation of alpha-linolenic acid from Sutherlandia frutescens and its inhibition of Mycobacterium tuberculosis' shikimate kinase enzyme. 2016 BMC Complement Altern Med pmid:27639973
Devassy JG et al. Omega-3 Polyunsaturated Fatty Acids and Oxylipins in Neuroinflammation and Management of Alzheimer Disease. 2016 Adv Nutr pmid:27633106
Duscharla D et al. Prostate Cancer Associated Lipid Signatures in Serum Studied by ESI-Tandem Mass Spectrometryas Potential New Biomarkers. 2016 PLoS ONE pmid:26958841
Minihane AM Impact of Genotype on EPA and DHA Status and Responsiveness to Increased Intakes. 2016 Nutrients pmid:26950146
Carotenuto F et al. Dietary Flaxseed Mitigates Impaired Skeletal Muscle Regeneration: in Vivo, in Vitro and in Silico Studies. 2016 Int J Med Sci pmid:26941581
Dote S et al. Effects of Triacylglycerol Molecular Species on the Oxidation Behavior of Oils Containing α-Linolenic Acid. 2016 J Oleo Sci pmid:26935948
Heskey CE et al. Adipose tissue α-linolenic acid is inversely associated with insulin resistance in adults. 2016 Am. J. Clin. Nutr. pmid:26912497
Zhao N et al. α-Linolenic acid increases the G0/G1 switch gene 2 mRNA expression in peripheral blood mononuclear cells from obese patients: a pilot study. 2016 Lipids Health Dis pmid:26912161
Taha AY et al. Threshold changes in rat brain docosahexaenoic acid incorporation and concentration following graded reductions in dietary alpha-linolenic acid. 2016 Prostaglandins Leukot. Essent. Fatty Acids pmid:26869088
Moriyama R et al. Long-chain unsaturated fatty acids reduce the transcriptional activity of the rat follicle-stimulating hormone β-subunit gene. 2016 J. Reprod. Dev. pmid:26853521
Deng Q et al. Single frequency intake of α-linolenic acid rich phytosterol esters attenuates atherosclerosis risk factors in hamsters fed a high fat diet. 2016 Lipids Health Dis pmid:26843021
Gómez-Cortés P et al. Novel characterisation of minor α-linolenic acid isomers in linseed oil by gas chromatography and covalent adduct chemical ionisation tandem mass spectrometry. 2016 Food Chem pmid:26830571
Sala-Vila A et al. Dietary α-Linolenic Acid, Marine ω-3 Fatty Acids, and Mortality in a Population With High Fish Consumption: Findings From the PREvención con DIeta MEDiterránea (PREDIMED) Study. 2016 J Am Heart Assoc pmid:26813890
Hadjighassem M et al. Oral consumption of α-linolenic acid increases serum BDNF levels in healthy adult humans. 2015 Nutr J pmid:25889793
Shomonov-Wagner L et al. Alpha linolenic acid in maternal diet halts the lipid disarray due to saturated fatty acids in the liver of mice offspring at weaning. 2015 Lipids Health Dis pmid:25889505
Blondeau N et al. Alpha-linolenic acid: an omega-3 fatty acid with neuroprotective properties-ready for use in the stroke clinic? 2015 Biomed Res Int pmid:25789320
Liu GJ et al. Targeted Lipidomics Studies Reveal that Linolenic Acid Promotes Cotton Fiber Elongation by Activating Phosphatidylinositol and Phosphatidylinositol Monophosphate Biosynthesis. 2015 Mol Plant pmid:25731673
Veshkini A et al. Effect of Linolenic acid during in vitro maturation of ovine oocytes: embryonic developmental potential and mRNA abundances of genes involved in apoptosis. 2015 J. Assist. Reprod. Genet. pmid:25715790
Bellaloui N and Mengistu A Effects of boron nutrition and water stress on nitrogen fixation, seed δ15N and δ13C dynamics, and seed composition in soybean cultivars differing in maturities. 2015 ScientificWorldJournal pmid:25667936
Fu X et al. Regulation of formation of volatile compounds of tea (Camellia sinensis) leaves by single light wavelength. 2015 Sci Rep pmid:26567525
Cespedes E et al. Adipose tissue n-3 fatty acids and metabolic syndrome. 2015 Eur J Clin Nutr pmid:25097001
Koh AS et al. The association between dietary omega-3 fatty acids and cardiovascular death: the Singapore Chinese Health Study. 2015 Eur J Prev Cardiol pmid:24343844
Keim SA and Branum AM Dietary intake of polyunsaturated fatty acids and fish among US children 12-60 months of age. 2015 Matern Child Nutr pmid:24034437
Shivashankar S and Sumathi M Do seed VLCFAs trigger spongy tissue formation in Alphonso mango by inducing germination? 2015 J. Biosci. pmid:25963264
Chen S et al. Profiling of volatile compounds and associated gene expression and enzyme activity during fruit development in two cucumber cultivars. 2015 PLoS ONE pmid:25799542
Yan S et al. Autoxidated linolenic acid inhibits aflatoxin biosynthesis in Aspergillus flavus via oxylipin species. 2015 Fungal Genet. Biol. pmid:25498164
Hernandez LR et al. Effect of plant growth regulators on fatty acids composition in Jatropha curcas L. callus culture. 2015 J Oleo Sci pmid:25757437
Clouard C et al. Dietary linoleic and α-linolenic acids affect anxiety-related responses and exploratory activity in growing pigs. 2015 J. Nutr. pmid:25644359
Perumalsamy H et al. Larvicidal activity and possible mode of action of four flavonoids and two fatty acids identified in Millettia pinnata seed toward three mosquito species. 2015 Parasit Vectors pmid:25928224
Conde-Sieira M et al. Hypothalamic fatty acid sensing in Senegalese sole (Solea senegalensis): response to long-chain saturated, monounsaturated, and polyunsaturated (n-3) fatty acids. 2015 Am. J. Physiol. Regul. Integr. Comp. Physiol. pmid:26468264
Jung SW et al. Mechanism of antibacterial activity of liposomal linolenic acid against Helicobacter pylori. 2015 PLoS ONE pmid:25793403
Wiest EF et al. Association of serum aryl hydrocarbon receptor activity and RBC omega-3 polyunsaturated fatty acids with flow-mediated dilation in healthy, young Hispanic cigarette smokers. 2015 Toxicol. Lett. pmid:25482063
Lewinska A et al. Fatty Acid Profile and Biological Activities of Linseed and Rapeseed Oils. 2015 Molecules pmid:26703545
Liu X et al. APA-style human milk fat analogue from silkworm pupae oil: Enzymatic production and improving storage stability using alkyl caffeates. 2015 Sci Rep pmid:26643045
Piermartiri T et al. α-Linolenic Acid, A Nutraceutical with Pleiotropic Properties That Targets Endogenous Neuroprotective Pathways to Protect against Organophosphate Nerve Agent-Induced Neuropathology. 2015 Molecules pmid:26569216
Wright AM et al. Effect of forage type with or without corn supplementation on animal performance, beef fatty acid composition, and palatability. 2015 J. Anim. Sci. pmid:26523597
Shi H et al. Molecular mechanism of substrate specificity for delta 6 desaturase from Mortierella alpina and Micromonas pusilla. 2015 J. Lipid Res. pmid:26486975
Dodington DW et al. Higher Intakes of Fruits and Vegetables, β-Carotene, Vitamin C, α-Tocopherol, EPA, and DHA Are Positively Associated with Periodontal Healing after Nonsurgical Periodontal Therapy in Nonsmokers but Not in Smokers. 2015 J. Nutr. pmid:26423734
Domenichiello AF et al. Is docosahexaenoic acid synthesis from α-linolenic acid sufficient to supply the adult brain? 2015 Prog. Lipid Res. pmid:25920364
Kawakami Y et al. Flaxseed oil intake reduces serum small dense low-density lipoprotein concentrations in Japanese men: a randomized, double blind, crossover study. 2015 Nutr J pmid:25896182