alpha-linolenic acid

Alpha-linolenic acid is a lipid of Fatty Acyls (FA) class. Alpha-linolenic acid is associated with abnormalities such as Coronary heart disease, abnormal fragmented structure, Arterial thrombosis and Subarachnoid Hemorrhage. The involved functions are known as Anabolism, Signal, Transcription, Genetic, Saturated and Regulation. Alpha-linolenic acid often locates in Blood, Body tissue, Plasma membrane, Hepatic and peroxisome. The associated genes with alpha-linolenic acid are FATE1 gene, volicitin, CYP2U1 gene, CYP1A2 gene and CYP2J2 gene. The related lipids are Fatty Acids, Dietary Fatty Acid, stearidonic acid and Fatty Acids, Nonesterified.

Cross Reference

Introduction

To understand associated biological information of alpha-linolenic acid, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with alpha-linolenic acid?

alpha-linolenic acid is suspected in Coronary heart disease, Arterial thrombosis, Subarachnoid Hemorrhage and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with alpha-linolenic acid

MeSH term MeSH ID Detail
Liver Diseases D008107 31 associated lipids
Lipid Metabolism, Inborn Errors D008052 26 associated lipids
Learning Disorders D007859 11 associated lipids
Insulin Resistance D007333 99 associated lipids
Insect Bites and Stings D007299 4 associated lipids
Inflammation D007249 119 associated lipids
Hypertension D006973 115 associated lipids
Hypersensitivity, Delayed D006968 43 associated lipids
Hypersensitivity D006967 22 associated lipids
Hyperlipidemia, Familial Combined D006950 9 associated lipids
Per page 10 20 50 100 | Total 104

PubChem Associated disorders and diseases

What pathways are associated with alpha-linolenic acid

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with alpha-linolenic acid?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with alpha-linolenic acid?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with alpha-linolenic acid?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with alpha-linolenic acid?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with alpha-linolenic acid?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with alpha-linolenic acid

Download all related citations
Per page 10 20 50 100 | Total 2471
Authors Title Published Journal PubMed Link
Hadjighassem M et al. Oral consumption of α-linolenic acid increases serum BDNF levels in healthy adult humans. 2015 Nutr J pmid:25889793
Shomonov-Wagner L et al. Alpha linolenic acid in maternal diet halts the lipid disarray due to saturated fatty acids in the liver of mice offspring at weaning. 2015 Lipids Health Dis pmid:25889505
Blondeau N et al. Alpha-linolenic acid: an omega-3 fatty acid with neuroprotective properties-ready for use in the stroke clinic? 2015 Biomed Res Int pmid:25789320
Liu GJ et al. Targeted Lipidomics Studies Reveal that Linolenic Acid Promotes Cotton Fiber Elongation by Activating Phosphatidylinositol and Phosphatidylinositol Monophosphate Biosynthesis. 2015 Mol Plant pmid:25731673
Veshkini A et al. Effect of Linolenic acid during in vitro maturation of ovine oocytes: embryonic developmental potential and mRNA abundances of genes involved in apoptosis. 2015 J. Assist. Reprod. Genet. pmid:25715790
Perng W et al. Alpha-linolenic acid (ALA) is inversely related to development of adiposity in school-age children. 2015 Eur J Clin Nutr pmid:25271016
Fu X et al. Regulation of formation of volatile compounds of tea (Camellia sinensis) leaves by single light wavelength. 2015 Sci Rep pmid:26567525
Guichardant M et al. Omega-3 polyunsaturated fatty acids and oxygenated metabolism in atherothrombosis. 2015 Biochim. Biophys. Acta pmid:25263947
Cespedes E et al. Adipose tissue n-3 fatty acids and metabolic syndrome. 2015 Eur J Clin Nutr pmid:25097001
Koh AS et al. The association between dietary omega-3 fatty acids and cardiovascular death: the Singapore Chinese Health Study. 2015 Eur J Prev Cardiol pmid:24343844
Keim SA and Branum AM Dietary intake of polyunsaturated fatty acids and fish among US children 12-60 months of age. 2015 Matern Child Nutr pmid:24034437
Shivashankar S and Sumathi M Do seed VLCFAs trigger spongy tissue formation in Alphonso mango by inducing germination? 2015 J. Biosci. pmid:25963264
Chen S et al. Profiling of volatile compounds and associated gene expression and enzyme activity during fruit development in two cucumber cultivars. 2015 PLoS ONE pmid:25799542
Hernandez LR et al. Effect of plant growth regulators on fatty acids composition in Jatropha curcas L. callus culture. 2015 J Oleo Sci pmid:25757437
Reinders I et al. Plasma phospholipid PUFAs are associated with greater muscle and knee extension strength but not with changes in muscle parameters in older adults. 2015 J. Nutr. pmid:25355842
Perumalsamy H et al. Larvicidal activity and possible mode of action of four flavonoids and two fatty acids identified in Millettia pinnata seed toward three mosquito species. 2015 Parasit Vectors pmid:25928224
Jung SW et al. Mechanism of antibacterial activity of liposomal linolenic acid against Helicobacter pylori. 2015 PLoS ONE pmid:25793403
Wiest EF et al. Association of serum aryl hydrocarbon receptor activity and RBC omega-3 polyunsaturated fatty acids with flow-mediated dilation in healthy, young Hispanic cigarette smokers. 2015 Toxicol. Lett. pmid:25482063
Lewinska A et al. Fatty Acid Profile and Biological Activities of Linseed and Rapeseed Oils. 2015 Molecules pmid:26703545
Liu X et al. APA-style human milk fat analogue from silkworm pupae oil: Enzymatic production and improving storage stability using alkyl caffeates. 2015 Sci Rep pmid:26643045
Piermartiri T et al. α-Linolenic Acid, A Nutraceutical with Pleiotropic Properties That Targets Endogenous Neuroprotective Pathways to Protect against Organophosphate Nerve Agent-Induced Neuropathology. 2015 Molecules pmid:26569216
Wright AM et al. Effect of forage type with or without corn supplementation on animal performance, beef fatty acid composition, and palatability. 2015 J. Anim. Sci. pmid:26523597
Shi H et al. Molecular mechanism of substrate specificity for delta 6 desaturase from Mortierella alpina and Micromonas pusilla. 2015 J. Lipid Res. pmid:26486975
Shang X et al. Dietary α-Linolenic Acid and Total ω-3 Fatty Acids Are Inversely Associated with Abdominal Aortic Calcification in Older Women, but Not in Older Men. 2015 J. Nutr. pmid:26041673
Nieman DC et al. No positive influence of ingesting chia seed oil on human running performance. 2015 Nutrients pmid:25988762
Domenichiello AF et al. Is docosahexaenoic acid synthesis from α-linolenic acid sufficient to supply the adult brain? 2015 Prog. Lipid Res. pmid:25920364
Kawakami Y et al. Flaxseed oil intake reduces serum small dense low-density lipoprotein concentrations in Japanese men: a randomized, double blind, crossover study. 2015 Nutr J pmid:25896182
Salazar MO et al. A thin-layer chromatography autographic method for the detection of inhibitors of the Salmonella PhoP-PhoQ regulatory system. 2014 Mar-Apr Phytochem Anal pmid:24185747
Childs CE et al. Increased dietary α-linolenic acid has sex-specific effects upon eicosapentaenoic acid status in humans: re-examination of data from a randomised, placebo-controlled, parallel study. 2014 Nutr J pmid:25496415
Petrogianni M et al. Additional benefit in CVD risk indices derived from the consumption of fortified milk when combined with a lifestyle intervention. 2014 Public Health Nutr pmid:23249766
Caligiuri SP et al. The HYPERFlax trial for determining the anti-HYPERtensive effects of dietary flaxseed in newly diagnosed stage 1 hypertensive patients: study protocol for a randomized, double-blinded, controlled clinical trial. 2014 Trials pmid:24938224
Baumgartner J et al. Providing male rats deficient in iron and n-3 fatty acids with iron and alpha-linolenic acid alone affects brain serotonin and cognition differently from combined provision. 2014 Lipids Health Dis pmid:24928171
Rajaram S Health benefits of plant-derived α-linolenic acid. 2014 Am. J. Clin. Nutr. pmid:24898228
Høstmark AT and Haug A The inverse association between relative abundances of oleic acid and arachidonic acid is related to alpha -linolenic acid. 2014 Lipids Health Dis pmid:24885640
He F et al. Perinatal α-linolenic acid availability alters the expression of genes related to memory and to epigenetic machinery, and the Mecp2 DNA methylation in the whole brain of mouse offspring. 2014 Int. J. Dev. Neurosci. pmid:24866706
Howard TD et al. DNA methylation in an enhancer region of the FADS cluster is associated with FADS activity in human liver. 2014 PLoS ONE pmid:24842322
Tian E et al. Detection and molecular characterization of two FAD3 genes controlling linolenic acid content and development of allele-specific markers in yellow mustard (Sinapis alba). 2014 PLoS ONE pmid:24823372
Hellstrand S et al. Genetic variation in FADS1 has little effect on the association between dietary PUFA intake and cardiovascular disease. 2014 J. Nutr. pmid:25008580
Herchi W et al. Flaxseed hull: Chemical composition and antioxidant activity during development. 2014 J Oleo Sci pmid:24919478
Morris JB et al. Flavonol content, oil%, and fatty acid composition variability in seeds of Teramnus labialis and T. uncinatus accessions with nutraceutical potential. 2014 J Diet Suppl pmid:25054688
Mariutto M et al. Reprogramming of fatty acid and oxylipin synthesis in rhizobacteria-induced systemic resistance in tomato. 2014 Plant Mol. Biol. pmid:24146221
Matravadia S et al. Both linoleic and α-linolenic acid prevent insulin resistance but have divergent impacts on skeletal muscle mitochondrial bioenergetics in obese Zucker rats. 2014 Am. J. Physiol. Endocrinol. Metab. pmid:24844257
Hudson BD et al. The molecular basis of ligand interaction at free fatty acid receptor 4 (FFA4/GPR120). 2014 J. Biol. Chem. pmid:24860101
Gorina SS et al. Detection and molecular cloning of CYP74Q1 gene: identification of Ranunculus acris leaf divinyl ether synthase. 2014 Biochim. Biophys. Acta pmid:24863619
Yuan X et al. Accumulation of eicosapolyenoic acids enhances sensitivity to abscisic acid and mitigates the effects of drought in transgenic Arabidopsis thaliana. 2014 J. Exp. Bot. pmid:24609499
Berasategi I et al. Reduced-fat bologna sausages with improved lipid fraction. 2014 J. Sci. Food Agric. pmid:24105447
Vedtofte MS et al. Association between the intake of α-linolenic acid and the risk of CHD. 2014 Br. J. Nutr. pmid:24964401
Soto-Cerda BJ et al. Association mapping of seed quality traits using the Canadian flax (Linum usitatissimum L.) core collection. 2014 Theor. Appl. Genet. pmid:24463785
Yavin E et al. Metabolic conversion of intra-amniotically-injected deuterium-labeled essential fatty acids by fetal rats following maternal n-3 fatty acid deficiency. 2014 Biochim. Biophys. Acta pmid:24960100
Liang CH et al. Synthesis of doxorubicin α-linolenic acid conjugate and evaluation of its antitumor activity. 2014 Mol. Pharm. pmid:24720787