alpha-linolenic acid

Alpha-linolenic acid is a lipid of Fatty Acyls (FA) class. Alpha-linolenic acid is associated with abnormalities such as Coronary heart disease, abnormal fragmented structure, Arterial thrombosis and Subarachnoid Hemorrhage. The involved functions are known as Anabolism, Signal, Transcription, Genetic, Saturated and Regulation. Alpha-linolenic acid often locates in Blood, Body tissue, Plasma membrane, Hepatic and peroxisome. The associated genes with alpha-linolenic acid are FATE1 gene, volicitin, CYP2U1 gene, CYP1A2 gene and CYP2J2 gene. The related lipids are Fatty Acids, Dietary Fatty Acid, stearidonic acid and Fatty Acids, Nonesterified.

Cross Reference

Introduction

To understand associated biological information of alpha-linolenic acid, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with alpha-linolenic acid?

alpha-linolenic acid is suspected in Coronary heart disease, Arterial thrombosis, Subarachnoid Hemorrhage and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with alpha-linolenic acid

MeSH term MeSH ID Detail
Hyperlipidemias D006949 73 associated lipids
Hypercholesterolemia D006937 91 associated lipids
Carcinoma, Hepatocellular D006528 140 associated lipids
Hemolysis D006461 131 associated lipids
Heart Failure D006333 36 associated lipids
Hearing Loss, High-Frequency D006316 1 associated lipids
Fatty Liver D005234 48 associated lipids
Mental Fatigue D005222 3 associated lipids
Epilepsy D004827 35 associated lipids
Endomyocardial Fibrosis D004719 4 associated lipids
Per page 10 20 50 100 | Total 104

PubChem Associated disorders and diseases

What pathways are associated with alpha-linolenic acid

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with alpha-linolenic acid?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with alpha-linolenic acid?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with alpha-linolenic acid?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with alpha-linolenic acid?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with alpha-linolenic acid?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with alpha-linolenic acid

Download all related citations
Per page 10 20 50 100 | Total 2471
Authors Title Published Journal PubMed Link
Ivan M et al. Rumen fermentation and microbial population in lactating dairy cows receiving diets containing oilseeds rich in C-18 fatty acids. 2013 Br. J. Nutr. pmid:22850225
Zhao ML et al. Enzymatic production of zero-trans plastic fat rich in α-linolenic acid and medium-chain fatty acids from highly hydrogenated soybean oil, Cinnamomum camphora seed oil, and perilla oil by lipozyme TL IM. 2013 J. Agric. Food Chem. pmid:23350869
Nozue T et al. Effects of statins on serum n-3 to n-6 polyunsaturated fatty acid ratios in patients with coronary artery disease. 2013 J. Cardiovasc. Pharmacol. Ther. pmid:23324995
Yan W et al. Reply to manuscript IJC-D-12-04197 entitled "Does alpha-lipoic acid treatment play a role on oxidative stress and insulin resistance in overweight/obese patients?" by MD Turgay Ulas. 2013 Int. J. Cardiol. pmid:23313466
Yan W et al. Effect of oral ALA supplementation on oxidative stress and insulin sensitivity among overweight/obese adults: a double-blinded, randomized, controlled, cross-over intervention trial. 2013 Int. J. Cardiol. pmid:23102606
Walker CG et al. Stearidonic acid as a supplemental source of ω-3 polyunsaturated fatty acids to enhance status for improved human health. 2013 Nutrition pmid:23102888
Kim Y et al. Synergism of α-linolenic acid, conjugated linoleic acid and calcium in decreasing adipocyte and increasing osteoblast cell growth. 2013 Lipids pmid:23757205
Lai YH et al. Association of dietary omega-3 fatty acids with prevalence of metabolic syndrome: the National Heart, Lung, and Blood Institute Family Heart Study. 2013 Clin Nutr pmid:23711994
Sun L et al. The neuroprotective effects of Coccomyxa gloeobotrydiformis on the ischemic stroke in a rat model. 2013 Int. J. Biol. Sci. pmid:23983614
Kwon TY et al. Headspace-solid phase microextraction-gas chromatography-tandem mass spectrometry (HS-SPME-GC-MS2) method for the determination of pyrazines in perilla seed oils: impact of roasting on the pyrazines in perilla seed oils. 2013 J. Agric. Food Chem. pmid:23968142
Lund AS et al. N-3 polyunsaturated fatty acids, body fat and inflammation. 2013 Obes Facts pmid:23970146
Lagunas B et al. A temporal regulatory mechanism controls the different contribution of endoplasmic reticulum and plastidial ω-3 desaturases to trienoic fatty acid content during leaf development in soybean (Glycine max cv Volania). 2013 Phytochemistry pmid:23928132
Coles L et al. A model to predict the ATP equivalents of macronutrients absorbed from food. 2013 Food Funct pmid:23233079
Yang Z and Huffman SL Modelling linoleic acid and α-linolenic acid requirements for infants and young children in developing countries. 2013 Matern Child Nutr pmid:23167585
Khaw KT Dietary fats and breast cancer risk. 2013 BMJ pmid:23861431
Ghisolfi J et al. Nutrient intakes of children aged 1-2 years as a function of milk consumption, cows' milk or growing-up milk. 2013 Public Health Nutr pmid:23098567
Katrangi W et al. Interactions of linoleic and alpha-linolenic acids in the development of fatty acid alterations in cystic fibrosis. 2013 Lipids pmid:23440519
Yi LT et al. Essential oil of Perilla frutescens-induced change in hippocampal expression of brain-derived neurotrophic factor in chronic unpredictable mild stress in mice. 2013 J Ethnopharmacol pmid:23506995
Gao F et al. Aging decreases rate of docosahexaenoic acid synthesis-secretion from circulating unesterified α-linolenic acid by rat liver. 2013 Age (Dordr) pmid:22388930
Kiernan M et al. The effect of the in vitro supplementation of exogenous long-chain fatty acids on bovine sperm cell function. 2013 Reprod. Fertil. Dev. pmid:23036717
Delplanque B et al. A dairy fat matrix providing alpha-linolenic acid (ALA) is better than a vegetable fat mixture to increase brain DHA accretion in young rats. 2013 Prostaglandins Leukot. Essent. Fatty Acids pmid:22884780
Gladine C et al. Optimized rapeseed oil enriched with healthy micronutrients: a relevant nutritional approach to prevent cardiovascular diseases. Results of the Optim'Oils randomized intervention trial. 2013 J. Nutr. Biochem. pmid:22784432
Turk HF et al. Inhibitory effects of omega-3 fatty acids on injury-induced epidermal growth factor receptor transactivation contribute to delayed wound healing. 2013 Am. J. Physiol., Cell Physiol. pmid:23426968
Kartikasari LR et al. Dietary alpha-linolenic acid enhances omega-3 long chain polyunsaturated fatty acid levels in chicken tissues. 2012 Oct-Nov Prostaglandins Leukot. Essent. Fatty Acids pmid:22925778
Tsuzuki W Inconsistencies in a highly polar capillary gas chromatography column and necessity of column performance checks for trans fatty acid measurement. 2012 Nov-Dec J AOAC Int pmid:23451392
Hofacer R et al. Omega-3 fatty acid deficiency increases stearoyl-CoA desaturase expression and activity indices in rat liver: positive association with non-fasting plasma triglyceride levels. 2012 Jan-Feb Prostaglandins Leukot. Essent. Fatty Acids pmid:22047910
Harland DR et al. Acute effects of prostaglandin E1 and E2 on vascular reactivity and blood flow in situ in the chick chorioallantoic membrane. 2012 Aug-Sep Prostaglandins Leukot. Essent. Fatty Acids pmid:22858445
Botsoglou E et al. Effect of supplementation of the laying hen diet with olive leaves (Olea europea L.) on lipid oxidation and fatty acid profile of α-linolenic acid enriched eggs during storage. 2012 Br. Poult. Sci. pmid:23130586
Zhao T et al. Impact of roasting on the chemical composition and oxidative stability of perilla oil. 2012 J. Food Sci. pmid:23140339
Msika O et al. NGF blocks polyunsaturated fatty acids biosynthesis in n-3 fatty acid-supplemented PC12 cells. 2012 Biochim. Biophys. Acta pmid:22564256
Moodley R et al. Elemental composition and fatty acid profile of the edible fruits of Amatungula (Carissa macrocarpa) and impact of soil quality on chemical characteristics. 2012 Anal. Chim. Acta pmid:22632042
Lakshmanan V et al. Metabolomic analysis of patient plasma yields evidence of plant-like α-linolenic acid metabolism in Plasmodium falciparum. 2012 J. Infect. Dis. pmid:22566569
Shimpukade B et al. Discovery of a potent and selective GPR120 agonist. 2012 J. Med. Chem. pmid:22519963
Shinohara N et al. Jacaric acid, a linolenic acid isomer with a conjugated triene system, has a strong antitumor effect in vitro and in vivo. 2012 Biochim. Biophys. Acta pmid:22521763
Gaquerel E et al. Nicotiana attenuata α-DIOXYGENASE1 through its production of 2-hydroxylinolenic acid is required for intact plant defense expression against attack from Manduca sexta larvae. 2012 New Phytol. pmid:22937952
Lerch S et al. Rapeseed or linseed in grass-based diets: effects on conjugated linoleic and conjugated linolenic acid isomers in milk fat from Holstein cows over 2 consecutive lactations. 2012 J. Dairy Sci. pmid:22999291
Wilk JB et al. Plasma and dietary omega-3 fatty acids, fish intake, and heart failure risk in the Physicians' Health Study. 2012 Am. J. Clin. Nutr. pmid:22952185
Moallem U et al. Transfer rate of α-linolenic acid from abomasally infused flaxseed oil into milk fat and the effects on milk fatty acid composition in dairy cows. 2012 J. Dairy Sci. pmid:22916932
Kuhns EH et al. A lepidopteran aminoacylase (L-ACY-1) in Heliothis virescens (Lepidoptera: Noctuidae) gut lumen hydrolyzes fatty acid-amino acid conjugates, elicitors of plant defense. 2012 Insect Biochem. Mol. Biol. pmid:22056272
Mitra K et al. Studies of reaction variables for lipase-catalyzed production of alpha-linolenic acid enriched structured lipid and oxidative stability with antioxidants. 2012 J. Food Sci. pmid:22122200
Couëdelo L et al. The fraction of α-linolenic acid present in the sn-2 position of structured triacylglycerols decreases in lymph chylomicrons and plasma triacylglycerols during the course of lipid absorption in rats. 2012 J. Nutr. pmid:22131546
Nwaru BI et al. Maternal intake of fatty acids during pregnancy and allergies in the offspring. 2012 Br. J. Nutr. pmid:22067943
Pal M and Ghosh M Prophylactic effect of α-linolenic acid and α-eleostearic acid against MeHg induced oxidative stress, DNA damage and structural changes in RBC membrane. 2012 Food Chem. Toxicol. pmid:22683484
Kowalska A et al. Impact of diets with different proportions of linseed and sunflower oils on the growth, liver histology, immunological and chemical blood parameters, and proximate composition of pikeperch Sander lucioperca (L.). 2012 Fish Physiol. Biochem. pmid:21656178
Zhang LH et al. [Effects of alpha-linolenic acid on inflammation and oxidative stress in the diabetic rats]. 2012 Zhongguo Ying Yong Sheng Li Xue Za Zhi pmid:22493899
Luo ZM et al. A new norisoprenoid and other compounds from Fuzhuan brick tea. 2012 Molecules pmid:22430120
Ibrahim A et al. Dietary α-linolenic acid-rich formula reduces adhesion molecules in rats with experimental colitis. 2012 Nutrition pmid:22261574
Zhang H et al. A mechanism underlying the effects of polyunsaturated fatty acids on breast cancer. 2012 Int. J. Mol. Med. pmid:22692672
Kronberg SL et al. Treatment of flaxseed to reduce biohydrogenation of α-linolenic acid by ruminal microbes in sheep and cattle, and increase n-3 fatty acid concentrations in red meat. 2012 J. Anim. Sci. pmid:22696616
Passos PP et al. Dopaminergic cell populations of the rat substantia nigra are differentially affected by essential fatty acid dietary restriction over two generations. 2012 J. Chem. Neuroanat. pmid:22687395