alpha-linolenic acid

Alpha-linolenic acid is a lipid of Fatty Acyls (FA) class. Alpha-linolenic acid is associated with abnormalities such as Coronary heart disease, abnormal fragmented structure, Arterial thrombosis and Subarachnoid Hemorrhage. The involved functions are known as Anabolism, Signal, Transcription, Genetic, Saturated and Regulation. Alpha-linolenic acid often locates in Blood, Body tissue, Plasma membrane, Hepatic and peroxisome. The associated genes with alpha-linolenic acid are FATE1 gene, volicitin, CYP2U1 gene, CYP1A2 gene and CYP2J2 gene. The related lipids are Fatty Acids, Dietary Fatty Acid, stearidonic acid and Fatty Acids, Nonesterified.

Cross Reference

Introduction

To understand associated biological information of alpha-linolenic acid, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with alpha-linolenic acid?

alpha-linolenic acid is suspected in Coronary heart disease, Arterial thrombosis, Subarachnoid Hemorrhage and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with alpha-linolenic acid

MeSH term MeSH ID Detail
Conjunctivitis, Allergic D003233 1 associated lipids
Aging, Premature D019588 1 associated lipids
Hearing Loss, High-Frequency D006316 1 associated lipids
Night Blindness D009755 1 associated lipids
Stomatitis, Aphthous D013281 1 associated lipids
Spinal Cord Ischemia D020760 2 associated lipids
Torsades de Pointes D016171 2 associated lipids
Sebaceous Gland Neoplasms D012626 2 associated lipids
Otorhinolaryngologic Neoplasms D010039 2 associated lipids
Mental Fatigue D005222 3 associated lipids
Carcinogenesis D063646 3 associated lipids
Depression, Postpartum D019052 3 associated lipids
Dyskinesias D020820 3 associated lipids
Endomyocardial Fibrosis D004719 4 associated lipids
Amyloidosis D000686 4 associated lipids
Insect Bites and Stings D007299 4 associated lipids
Retinitis Pigmentosa D012174 6 associated lipids
Exocrine Pancreatic Insufficiency D010188 6 associated lipids
Pancytopenia D010198 6 associated lipids
Urinary Bladder Neoplasms D001749 7 associated lipids
Irritable Bowel Syndrome D043183 8 associated lipids
Community-Acquired Infections D017714 8 associated lipids
Paraplegia D010264 8 associated lipids
Hyperlipidemia, Familial Combined D006950 9 associated lipids
Tachycardia, Ventricular D017180 9 associated lipids
Retinal Degeneration D012162 9 associated lipids
Long QT Syndrome D008133 10 associated lipids
Colorectal Neoplasms D015179 10 associated lipids
Vitamin B 6 Deficiency D026681 10 associated lipids
Aortic Diseases D001018 11 associated lipids
Learning Disorders D007859 11 associated lipids
Overweight D050177 11 associated lipids
Death, Sudden, Cardiac D016757 12 associated lipids
Deficiency Diseases D003677 12 associated lipids
Cat Diseases D002371 12 associated lipids
Retinoblastoma D012175 12 associated lipids
Neoplasms D009369 13 associated lipids
Adenomatous Polyposis Coli D011125 16 associated lipids
Ventricular Fibrillation D014693 16 associated lipids
Atrial Fibrillation D001281 16 associated lipids
Bronchial Spasm D001986 18 associated lipids
Carcinoma, Ductal, Breast D018270 19 associated lipids
Pregnancy Complications D011248 19 associated lipids
Dermatitis, Atopic D003876 19 associated lipids
Diabetic Angiopathies D003925 20 associated lipids
Prostatic Hyperplasia D011470 20 associated lipids
Tuberculosis D014376 20 associated lipids
Myocardial Infarction D009203 21 associated lipids
Hypersensitivity D006967 22 associated lipids
Malaria, Falciparum D016778 22 associated lipids
Birth Weight D001724 23 associated lipids
Breast Neoplasms D001943 24 associated lipids
Cattle Diseases D002418 24 associated lipids
Pseudomonas Infections D011552 25 associated lipids
Lipid Metabolism, Inborn Errors D008052 26 associated lipids
Encephalomyelitis, Autoimmune, Experimental D004681 26 associated lipids
Autoimmune Diseases D001327 27 associated lipids
Adrenoleukodystrophy D000326 29 associated lipids
Vitamin E Deficiency D014811 29 associated lipids
Dermatitis D003872 30 associated lipids
Liver Diseases D008107 31 associated lipids
Stroke D020521 32 associated lipids
Neurotoxicity Syndromes D020258 34 associated lipids
Epilepsy D004827 35 associated lipids
Infarction, Middle Cerebral Artery D020244 35 associated lipids
Heart Failure D006333 36 associated lipids
Diabetic Nephropathies D003928 39 associated lipids
Zellweger Syndrome D015211 39 associated lipids
Adenoma D000236 40 associated lipids
Arthritis D001168 41 associated lipids
Hypersensitivity, Delayed D006968 43 associated lipids
Metabolic Syndrome D024821 44 associated lipids
Metabolism, Inborn Errors D008661 46 associated lipids
Coronary Artery Disease D003324 47 associated lipids
Precancerous Conditions D011230 48 associated lipids
Fatty Liver D005234 48 associated lipids
Thrombosis D013927 49 associated lipids
Diabetes Mellitus, Type 1 D003922 56 associated lipids
Pain D010146 64 associated lipids
Cystic Fibrosis D003550 65 associated lipids
Neuroblastoma D009447 66 associated lipids
Colitis D003092 69 associated lipids
Coronary Disease D003327 70 associated lipids
Hyperlipidemias D006949 73 associated lipids
Pancreatic Neoplasms D010190 77 associated lipids
Atherosclerosis D050197 85 associated lipids
Diabetes Mellitus, Experimental D003921 85 associated lipids
Arteriosclerosis D001161 86 associated lipids
Diabetes Mellitus, Type 2 D003924 87 associated lipids
Seizures D012640 87 associated lipids
Brain Ischemia D002545 89 associated lipids
Diabetes Mellitus D003920 90 associated lipids
Hypercholesterolemia D006937 91 associated lipids
Insulin Resistance D007333 99 associated lipids
Weight Gain D015430 101 associated lipids
Hypertension D006973 115 associated lipids
Inflammation D007249 119 associated lipids
Hemolysis D006461 131 associated lipids
Carcinoma, Hepatocellular D006528 140 associated lipids
Edema D004487 152 associated lipids
Per page 10 20 50 100 | Total 104

PubChem Associated disorders and diseases

What pathways are associated with alpha-linolenic acid

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with alpha-linolenic acid?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with alpha-linolenic acid?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with alpha-linolenic acid?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with alpha-linolenic acid?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with alpha-linolenic acid?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with alpha-linolenic acid

Download all related citations
Per page 10 20 50 100 | Total 2471
Authors Title Published Journal PubMed Link
Almario RU and Karakas SE Lignan content of the flaxseed influences its biological effects in healthy men and women. 2013 J Am Coll Nutr pmid:23885993
Stivala S et al. Dietary α-linolenic acid increases the platelet count in ApoE-/- mice by reducing clearance. 2013 Blood pmid:23801636
Pan X et al. Identification of a pair of phospholipid:diacylglycerol acyltransferases from developing flax (Linum usitatissimum L.) seed catalyzing the selective production of trilinolenin. 2013 J. Biol. Chem. pmid:23824186
Nakashima R et al. Exposure to DEHP decreased four fatty acid levels in plasma of prepartum mice. 2013 Toxicology pmid:23619606
Wang DQ et al. [Alpha-linolenic acid improves insulin sensitivity in obese patients]. 2013 Zhonghua Yi Xue Za Zhi pmid:23648351
Oh HJ et al. Production of 10-hydroxy-12,15(Z,Z)-octadecadienoic acid from α-linolenic acid by permeabilized cells of recombinant Escherichia coli expressing the oleate hydratase gene of Stenotrophomonas maltophilia. 2013 Biotechnol. Lett. pmid:23690042
Schuchardt JP et al. Comparison of free serum oxylipin concentrations in hyper- vs. normolipidemic men. 2013 Prostaglandins Leukot. Essent. Fatty Acids pmid:23694766
Gregory MK et al. Functional characterization of the chicken fatty acid elongases. 2013 J. Nutr. pmid:23173174
Tu WC et al. Dietary alpha-linolenic acid does not enhance accumulation of omega-3 long-chain polyunsaturated fatty acids in barramundi (Lates calcarifer). 2013 Comp. Biochem. Physiol. B, Biochem. Mol. Biol. pmid:23085323
Poudyal H et al. Effects of ALA, EPA and DHA in high-carbohydrate, high-fat diet-induced metabolic syndrome in rats. 2013 J. Nutr. Biochem. pmid:23026492
Afitlhile M et al. A mutant of the Arabidopsis thaliana TOC159 gene accumulates reduced levels of linolenic acid and monogalactosyldiacylglycerol. 2013 Plant Physiol. Biochem. pmid:24184455
Ma T et al. Effect of droplet size on autoxidation rates of methyl linoleate and α-linolenate in an oil-in-water emulsion. 2013 J Oleo Sci pmid:24292352
Lau BY et al. Investigating the role of polyunsaturated fatty acids in bone development using animal models. 2013 Molecules pmid:24248147
Sonne DP and Knop FK Cardiovascular effects of alpha-linolenic acid--a possible role of glucagon-like peptide-1. 2013 Exp. Biol. Med. (Maywood) pmid:24174423
Arm JP et al. Impact of botanical oils on polyunsaturated fatty acid metabolism and leukotriene generation in mild asthmatics. 2013 Lipids Health Dis pmid:24088297
Brouwer IA et al. Effect of alpha linolenic acid supplementation on serum prostate specific antigen (PSA): results from the alpha omega trial. 2013 PLoS ONE pmid:24349086
Yang D et al. Antioxidative activities of Ginkgo biloba extract on oil/water emulsion system prepared from an enzymatically modified lipid containing alpha-linolenic acid. 2013 J. Food Sci. pmid:23278764
Shibata E et al. Free fatty acids inhibit protein tyrosine phosphatase 1B and activate Akt. 2013 Cell. Physiol. Biochem. pmid:24107614
Reinders I et al. Associations of serum n-3 and n-6 polyunsaturated fatty acids with echocardiographic measures among older adults: the Hoorn Study. 2013 Eur J Clin Nutr pmid:24084512
Smink W et al. Effect of intake of linoleic acid and α-linolenic acid levels on conversion into long-chain polyunsaturated fatty acids in backfat and in intramuscular fat of growing pigs. 2013 J Anim Physiol Anim Nutr (Berl) pmid:22463497
Gibson RA et al. Docosahexaenoic acid synthesis from alpha-linolenic acid is inhibited by diets high in polyunsaturated fatty acids. 2013 Prostaglandins Leukot. Essent. Fatty Acids pmid:22515943
Benbrook CM et al. Organic production enhances milk nutritional quality by shifting fatty acid composition: a United States-wide, 18-month study. 2013 PLoS ONE pmid:24349282
de Oliveira Otto MC et al. Circulating and dietary omega-3 and omega-6 polyunsaturated fatty acids and incidence of CVD in the Multi-Ethnic Study of Atherosclerosis. 2013 J Am Heart Assoc pmid:24351702
Kartikasari LR et al. Dietary alpha-linolenic acid enhances omega-3 long chain polyunsaturated fatty acid levels in chicken tissues. 2012 Oct-Nov Prostaglandins Leukot. Essent. Fatty Acids pmid:22925778
Tsuzuki W Inconsistencies in a highly polar capillary gas chromatography column and necessity of column performance checks for trans fatty acid measurement. 2012 Nov-Dec J AOAC Int pmid:23451392
Hofacer R et al. Omega-3 fatty acid deficiency increases stearoyl-CoA desaturase expression and activity indices in rat liver: positive association with non-fasting plasma triglyceride levels. 2012 Jan-Feb Prostaglandins Leukot. Essent. Fatty Acids pmid:22047910
Harland DR et al. Acute effects of prostaglandin E1 and E2 on vascular reactivity and blood flow in situ in the chick chorioallantoic membrane. 2012 Aug-Sep Prostaglandins Leukot. Essent. Fatty Acids pmid:22858445
Azrad M et al. Prostatic alpha-linolenic acid (ALA) is positively associated with aggressive prostate cancer: a relationship which may depend on genetic variation in ALA metabolism. 2012 PLoS ONE pmid:23285256
Wang X et al. Transcriptome analysis of Sacha Inchi (Plukenetia volubilis L.) seeds at two developmental stages. 2012 BMC Genomics pmid:23256450
Vedtofte MS et al. The role of essential fatty acids in the control of coronary heart disease. 2012 Curr Opin Clin Nutr Metab Care pmid:23037902
Kim DH et al. Gamma linolenic acid exerts anti-inflammatory and anti-fibrotic effects in diabetic nephropathy. 2012 Yonsei Med. J. pmid:23074118
Pan A et al. α-Linolenic acid and risk of cardiovascular disease: a systematic review and meta-analysis. 2012 Am. J. Clin. Nutr. pmid:23076616
Barrett E et al. Bifidobacterium breve with α-linolenic acid and linoleic acid alters fatty acid metabolism in the maternal separation model of irritable bowel syndrome. 2012 PLoS ONE pmid:23185248
Fang XL et al. Roles of α-linolenic acid on IGF-I secretion and GH/IGF system gene expression in porcine primary hepatocytes. 2012 Mol. Biol. Rep. pmid:23053988
He ML et al. Triticale dried distillers' grain increases alpha-linolenic acid in subcutaneous fat of beef cattle fed oilseeds. 2012 Lipids pmid:23054550
Hennessy AA et al. The production of conjugated α-linolenic, γ-linolenic and stearidonic acids by strains of bifidobacteria and propionibacteria. 2012 Lipids pmid:22160449
Järvinen R et al. Associations of dietary polyunsaturated fatty acids with bone mineral density in elderly women. 2012 Eur J Clin Nutr pmid:22113249
Nandi S et al. Effect of prostaglandin producing modulators on in vitro growth of buffalo uterine epithelial cells. 2012 Theriogenology pmid:22115808
Gutla PV et al. Modulation of plant TPC channels by polyunsaturated fatty acids. 2012 J. Exp. Bot. pmid:23105130
Jernerén F et al. Linolenate 9R-dioxygenase and allene oxide synthase activities of Lasiodiplodia theobromae. 2012 Lipids pmid:22048860
Garcia CV et al. Characterisation of bound volatile compounds of a low flavour kiwifruit species: Actinidia eriantha. 2012 Food Chem pmid:23107675
Beck JJ et al. Generation of the volatile spiroketals conophthorin and chalcogran by fungal spores on polyunsaturated fatty acids common to almonds and pistachios. 2012 J. Agric. Food Chem. pmid:23153034
Sauerwald UC et al. Effect of different levels of docosahexaenoic acid supply on fatty acid status and linoleic and α-linolenic acid conversion in preterm infants. 2012 J. Pediatr. Gastroenterol. Nutr. pmid:22008957
Han SN et al. Novel soybean oils differing in fatty acid composition alter immune functions of moderately hypercholesterolemic older adults. 2012 J. Nutr. pmid:23096013
Saha SS et al. Synergistic effect of conjugated linolenic acid isomers against induced oxidative stress, inflammation and erythrocyte membrane disintegrity in rat model. 2012 Biochim. Biophys. Acta pmid:22967758
von Berlepsch S et al. The acyl-acyl carrier protein synthetase from Synechocystis sp. PCC 6803 mediates fatty acid import. 2012 Plant Physiol. pmid:22535424
Tyagi A et al. Attenuation of colonic inflammation by partial replacement of dietary linoleic acid with α-linolenic acid in a rat model of inflammatory bowel disease. 2012 Br. J. Nutr. pmid:22243775
Thomas T et al. The effect of a 1-year multiple micronutrient or n-3 fatty acid fortified food intervention on morbidity in Indian school children. 2012 Eur J Clin Nutr pmid:22009072
Demchenko K et al. Analysis of the subcellular localisation of lipoxygenase in legume and actinorhizal nodules. 2012 Plant Biol (Stuttg) pmid:21973171
Jackson MD et al. Associations of whole-blood fatty acids and dietary intakes with prostate cancer in Jamaica. 2012 Cancer Causes Control pmid:21984307
de Batlle J et al. Association between Ω3 and Ω6 fatty acid intakes and serum inflammatory markers in COPD. 2012 J. Nutr. Biochem. pmid:21889886
Zhang J et al. Alpha-linolenic acid increases cholesterol efflux in macrophage-derived foam cells by decreasing stearoyl CoA desaturase 1 expression: evidence for a farnesoid-X-receptor mechanism of action. 2012 J. Nutr. Biochem. pmid:21658928
He ML et al. Feeding flaxseed in grass hay and barley silage diets to beef cows increases alpha-linolenic acid and its biohydrogenation intermediates in subcutaneous fat. 2012 J. Anim. Sci. pmid:22274861
Poudyal H et al. Lipid redistribution by α-linolenic acid-rich chia seed inhibits stearoyl-CoA desaturase-1 and induces cardiac and hepatic protection in diet-induced obese rats. 2012 J. Nutr. Biochem. pmid:21429727
Sun T et al. Meat fatty acid and cholesterol level of free-range broilers fed on grasshoppers on alpine rangeland in the Tibetan Plateau. 2012 J. Sci. Food Agric. pmid:22318921
Deckelbaum RJ and Torrejon C The omega-3 fatty acid nutritional landscape: health benefits and sources. 2012 J. Nutr. pmid:22323763
Nieman DC et al. Chia seed supplementation and disease risk factors in overweight women: a metabolomics investigation. 2012 J Altern Complement Med pmid:22830971
Regensburger J et al. Fatty acids and vitamins generate singlet oxygen under UVB irradiation. 2012 Exp. Dermatol. pmid:22229443
Hughes BH et al. Oxidative stability and consumer acceptance of fish oil fortified nutrition bars. 2012 J. Food Sci. pmid:22957916
Padilla MN et al. Molecular cloning, functional characterization and transcriptional regulation of a 9-lipoxygenase gene from olive. 2012 Phytochemistry pmid:22169502
Levitan EB et al. α-Linolenic acid, linoleic acid and heart failure in women. 2012 Br. J. Nutr. pmid:22172525
Janssen S et al. Sensing of fatty acids for octanoylation of ghrelin involves a gustatory G-protein. 2012 PLoS ONE pmid:22768248
Gupta R and Prabhune AA Structural determination and chemical esterification of the sophorolipids produced by Candida bombicola grown on glucose and α-linolenic acid. 2012 Biotechnol. Lett. pmid:22167634
Poudel-Tandukar K et al. Relationship of serum fatty acid composition and desaturase activity to C-reactive protein in Japanese men and women. 2012 Atherosclerosis pmid:22153152
Zheng MM et al. Immobilization of Candida rugosa lipase on hydrophobic/strong cation-exchange functional silica particles for biocatalytic synthesis of phytosterol esters. 2012 Bioresour. Technol. pmid:22209442
Shen J et al. Effect of essential fatty acids on glucose-induced cytotoxicity to retinal vascular endothelial cells. 2012 Lipids Health Dis pmid:22781401
Chiu CC et al. Associations between n-3 PUFA concentrations and cognitive function after recovery from late-life depression. 2012 Am. J. Clin. Nutr. pmid:22218153
Lemaitre RN et al. Circulating and dietary α-linolenic acid and incidence of congestive heart failure in older adults: the Cardiovascular Health Study. 2012 Am. J. Clin. Nutr. pmid:22743310
Zhang L et al. Quantitative genomics of 30 complex phenotypes in Wagyu x Angus F₁ progeny. 2012 Int. J. Biol. Sci. pmid:22745575
Fink BD et al. Endothelial cell and platelet bioenergetics: effect of glucose and nutrient composition. 2012 PLoS ONE pmid:22745753
Egert S et al. Margarines fortified with α-linolenic acid, eicosapentaenoic acid, or docosahexaenoic acid alter the fatty acid composition of erythrocytes but do not affect the antioxidant status of healthy adults. 2012 J. Nutr. pmid:22810989
Moallem U and Zachut M Short communication: the effects of supplementation of various n-3 fatty acids to late-pregnant dairy cows on plasma fatty acid composition of the newborn calves. 2012 J. Dairy Sci. pmid:22720961
Garneau V et al. Omega-3 fatty acids status in human subjects estimated using a food frequency questionnaire and plasma phospholipids levels. 2012 Nutr J pmid:22775977
Pham AT et al. Combinations of mutant FAD2 and FAD3 genes to produce high oleic acid and low linolenic acid soybean oil. 2012 Theor. Appl. Genet. pmid:22476873
Rosa DD et al. Fish oil improves the lipid profile and reduces inflammatory cytokines in Wistar rats with precancerous colon lesions. 2012 Nutr Cancer pmid:22483364
Karppi J et al. Serum β-carotene in relation to risk of prostate cancer: the Kuopio Ischaemic Heart Disease Risk Factor study. 2012 Nutr Cancer pmid:22420939
Zhang G et al. Erythrocyte n-3 fatty acids and metabolic syndrome in middle-aged and older Chinese. 2012 J. Clin. Endocrinol. Metab. pmid:22456621
Ishida Y et al. Validation of thermally assisted hydrolysis and methylation-gas chromatography using a vertical microfurnace pyrolyzer for the compositional analysis of Fatty Acid components in microalgae. 2012 J. Agric. Food Chem. pmid:22458968
Mirmiran P et al. Association between interaction and ratio of ω-3 and ω-6 polyunsaturated fatty acid and the metabolic syndrome in adults. 2012 Nutrition pmid:22459553
Maqbool A et al. Relation between dietary fat intake type and serum fatty acid status in children with cystic fibrosis. 2012 J. Pediatr. Gastroenterol. Nutr. pmid:22699835
Arsenault D et al. Chronic dietary intake of α-linolenic acid does not replicate the effects of DHA on passive properties of entorhinal cortex neurons. 2012 Br. J. Nutr. pmid:21851757
Bocianowski J et al. Determination of fatty acid composition in seed oil of rapeseed (Brassica napus L.) by mutated alleles of the FAD3 desaturase genes. 2012 J. Appl. Genet. pmid:21912934
Baars T et al. Experimental improvement of cow milk fatty acid composition in organic winter diets. 2012 J. Sci. Food Agric. pmid:22173628
Longvah T et al. Eri silkworm: a source of edible oil with a high content of α-linolenic acid and of significant nutritional value. 2012 J. Sci. Food Agric. pmid:22290445
de Freitas JM et al. Influence of cellular fatty acid composition on the response of Saccharomyces cerevisiae to hydrostatic pressure stress. 2012 FEMS Yeast Res. pmid:22846157
Gerber M Omega-3 fatty acids and cancers: a systematic update review of epidemiological studies. 2012 Br. J. Nutr. pmid:22591896
Tu WC et al. An alternative n-3 fatty acid elongation pathway utilising 18:3n-3 in barramundi (Lates calcarifer). 2012 Biochem. Biophys. Res. Commun. pmid:22640739
Vyncke KE et al. Dietary fatty acid intake, its food sources and determinants in European adolescents: the HELENA (Healthy Lifestyle in Europe by Nutrition in Adolescence) Study. 2012 Br. J. Nutr. pmid:22370331
Park HG et al. Production of a conjugated fatty acid by Bifidobacterium breve LMC520 from α-linolenic acid: conjugated linolenic acid (CLnA). 2012 J. Agric. Food Chem. pmid:22372442
Liu HL et al. Identification and evaluation of ω-3 fatty acid desaturase genes for hyperfortifying α-linolenic acid in transgenic rice seed. 2012 J. Exp. Bot. pmid:22378946
Tu WC et al. Barramundi (Lates calcarifer) desaturase with Δ6/Δ8 dual activities. 2012 Biotechnol. Lett. pmid:22391738
Caspar-Bauguil S et al. Anorexia nervosa patients display a deficit in membrane long chain poly-unsaturated fatty acids. 2012 Clin Nutr pmid:22385730
Gorissen L et al. Conjugated linoleic and linolenic acid production kinetics by bifidobacteria differ among strains. 2012 Int. J. Food Microbiol. pmid:22405353
Shinohara N et al. jacaric acid, a linolenic acid isomer with a conjugated triene system, reduces stearoyl-CoA desaturase expression in liver of mice. 2012 J Oleo Sci pmid:22864514
Román Á et al. Contribution of the different omega-3 fatty acid desaturase genes to the cold response in soybean. 2012 J. Exp. Bot. pmid:22865909
Griffin BA Goldilocks and the three bonds: new evidence for the conditional benefits of dietary α-linolenic acid in treating cardiovascular risk in the metabolic syndrome. 2012 Br. J. Nutr. pmid:22894910
Baxheinrich A et al. Effects of a rapeseed oil-enriched hypoenergetic diet with a high content of α-linolenic acid on body weight and cardiovascular risk profile in patients with the metabolic syndrome. 2012 Br. J. Nutr. pmid:22894911
Nam KH and Yoshihara T Interactions among LOX metabolites regulate temperature-mediated flower bud formation in morning glory (Pharbitis nil). 2012 J. Plant Physiol. pmid:22902207
Evans SJ et al. Association of plasma ω-3 and ω-6 lipids with burden of disease measures in bipolar subjects. 2012 J Psychiatr Res pmid:22884424
Pan H et al. Alpha-linolenic acid is a potent neuroprotective agent against soman-induced neuropathology. 2012 Neurotoxicology pmid:22884490