alpha-linolenic acid

Alpha-linolenic acid is a lipid of Fatty Acyls (FA) class. Alpha-linolenic acid is associated with abnormalities such as Coronary heart disease, abnormal fragmented structure, Arterial thrombosis and Subarachnoid Hemorrhage. The involved functions are known as Anabolism, Signal, Transcription, Genetic, Saturated and Regulation. Alpha-linolenic acid often locates in Blood, Body tissue, Plasma membrane, Hepatic and peroxisome. The associated genes with alpha-linolenic acid are FATE1 gene, volicitin, CYP2U1 gene, CYP1A2 gene and CYP2J2 gene. The related lipids are Fatty Acids, Dietary Fatty Acid, stearidonic acid and Fatty Acids, Nonesterified.

Cross Reference

Introduction

To understand associated biological information of alpha-linolenic acid, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with alpha-linolenic acid?

alpha-linolenic acid is suspected in Coronary heart disease, Arterial thrombosis, Subarachnoid Hemorrhage and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with alpha-linolenic acid

MeSH term MeSH ID Detail
Conjunctivitis, Allergic D003233 1 associated lipids
Hearing Loss, High-Frequency D006316 1 associated lipids
Aging, Premature D019588 1 associated lipids
Night Blindness D009755 1 associated lipids
Stomatitis, Aphthous D013281 1 associated lipids
Torsades de Pointes D016171 2 associated lipids
Sebaceous Gland Neoplasms D012626 2 associated lipids
Otorhinolaryngologic Neoplasms D010039 2 associated lipids
Spinal Cord Ischemia D020760 2 associated lipids
Mental Fatigue D005222 3 associated lipids
Carcinogenesis D063646 3 associated lipids
Depression, Postpartum D019052 3 associated lipids
Dyskinesias D020820 3 associated lipids
Amyloidosis D000686 4 associated lipids
Insect Bites and Stings D007299 4 associated lipids
Endomyocardial Fibrosis D004719 4 associated lipids
Retinitis Pigmentosa D012174 6 associated lipids
Exocrine Pancreatic Insufficiency D010188 6 associated lipids
Pancytopenia D010198 6 associated lipids
Urinary Bladder Neoplasms D001749 7 associated lipids
Irritable Bowel Syndrome D043183 8 associated lipids
Community-Acquired Infections D017714 8 associated lipids
Paraplegia D010264 8 associated lipids
Tachycardia, Ventricular D017180 9 associated lipids
Retinal Degeneration D012162 9 associated lipids
Hyperlipidemia, Familial Combined D006950 9 associated lipids
Long QT Syndrome D008133 10 associated lipids
Colorectal Neoplasms D015179 10 associated lipids
Vitamin B 6 Deficiency D026681 10 associated lipids
Overweight D050177 11 associated lipids
Aortic Diseases D001018 11 associated lipids
Learning Disorders D007859 11 associated lipids
Deficiency Diseases D003677 12 associated lipids
Cat Diseases D002371 12 associated lipids
Retinoblastoma D012175 12 associated lipids
Death, Sudden, Cardiac D016757 12 associated lipids
Neoplasms D009369 13 associated lipids
Atrial Fibrillation D001281 16 associated lipids
Adenomatous Polyposis Coli D011125 16 associated lipids
Ventricular Fibrillation D014693 16 associated lipids
Bronchial Spasm D001986 18 associated lipids
Carcinoma, Ductal, Breast D018270 19 associated lipids
Pregnancy Complications D011248 19 associated lipids
Dermatitis, Atopic D003876 19 associated lipids
Tuberculosis D014376 20 associated lipids
Diabetic Angiopathies D003925 20 associated lipids
Prostatic Hyperplasia D011470 20 associated lipids
Myocardial Infarction D009203 21 associated lipids
Malaria, Falciparum D016778 22 associated lipids
Hypersensitivity D006967 22 associated lipids
Per page 10 20 50 100 | Total 104

PubChem Associated disorders and diseases

What pathways are associated with alpha-linolenic acid

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with alpha-linolenic acid?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with alpha-linolenic acid?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with alpha-linolenic acid?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with alpha-linolenic acid?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with alpha-linolenic acid?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with alpha-linolenic acid

Download all related citations
Per page 10 20 50 100 | Total 2471
Authors Title Published Journal PubMed Link
Petrogianni M et al. Additional benefit in CVD risk indices derived from the consumption of fortified milk when combined with a lifestyle intervention. 2014 Public Health Nutr pmid:23249766
Caligiuri SP et al. The HYPERFlax trial for determining the anti-HYPERtensive effects of dietary flaxseed in newly diagnosed stage 1 hypertensive patients: study protocol for a randomized, double-blinded, controlled clinical trial. 2014 Trials pmid:24938224
Baumgartner J et al. Providing male rats deficient in iron and n-3 fatty acids with iron and alpha-linolenic acid alone affects brain serotonin and cognition differently from combined provision. 2014 Lipids Health Dis pmid:24928171
Herchi W et al. Flaxseed hull: Chemical composition and antioxidant activity during development. 2014 J Oleo Sci pmid:24919478
Mariutto M et al. Reprogramming of fatty acid and oxylipin synthesis in rhizobacteria-induced systemic resistance in tomato. 2014 Plant Mol. Biol. pmid:24146221
Matravadia S et al. Both linoleic and α-linolenic acid prevent insulin resistance but have divergent impacts on skeletal muscle mitochondrial bioenergetics in obese Zucker rats. 2014 Am. J. Physiol. Endocrinol. Metab. pmid:24844257
Berasategi I et al. Reduced-fat bologna sausages with improved lipid fraction. 2014 J. Sci. Food Agric. pmid:24105447
Vedtofte MS et al. Association between the intake of α-linolenic acid and the risk of CHD. 2014 Br. J. Nutr. pmid:24964401
Liang CH et al. Synthesis of doxorubicin α-linolenic acid conjugate and evaluation of its antitumor activity. 2014 Mol. Pharm. pmid:24720787
Hanke D et al. A diet high in α-linolenic acid and monounsaturated fatty acids attenuates hepatic steatosis and alters hepatic phospholipid fatty acid profile in diet-induced obese rats. 2013 Nov-Dec Prostaglandins Leukot. Essent. Fatty Acids pmid:24140006
Ivan M et al. Rumen fermentation and microbial population in lactating dairy cows receiving diets containing oilseeds rich in C-18 fatty acids. 2013 Br. J. Nutr. pmid:22850225
Zheng JS et al. Intake of fish and marine n-3 polyunsaturated fatty acids and risk of breast cancer: meta-analysis of data from 21 independent prospective cohort studies. 2013 BMJ pmid:23814120
Almario RU and Karakas SE Lignan content of the flaxseed influences its biological effects in healthy men and women. 2013 J Am Coll Nutr pmid:23885993
Stivala S et al. Dietary α-linolenic acid increases the platelet count in ApoE-/- mice by reducing clearance. 2013 Blood pmid:23801636
Pan X et al. Identification of a pair of phospholipid:diacylglycerol acyltransferases from developing flax (Linum usitatissimum L.) seed catalyzing the selective production of trilinolenin. 2013 J. Biol. Chem. pmid:23824186
Nakashima R et al. Exposure to DEHP decreased four fatty acid levels in plasma of prepartum mice. 2013 Toxicology pmid:23619606
Wang DQ et al. [Alpha-linolenic acid improves insulin sensitivity in obese patients]. 2013 Zhonghua Yi Xue Za Zhi pmid:23648351
Oh HJ et al. Production of 10-hydroxy-12,15(Z,Z)-octadecadienoic acid from α-linolenic acid by permeabilized cells of recombinant Escherichia coli expressing the oleate hydratase gene of Stenotrophomonas maltophilia. 2013 Biotechnol. Lett. pmid:23690042
Schuchardt JP et al. Comparison of free serum oxylipin concentrations in hyper- vs. normolipidemic men. 2013 Prostaglandins Leukot. Essent. Fatty Acids pmid:23694766
Sengupta A and Ghosh M Protective effect of eicosapentaenoic acid-docosahexaenoic acid and alpha-linolenic acid rich phytosterol ester on brain antioxidant status and brain lipid composition in hypercholesterolemic rats. 2013 Indian J. Exp. Biol. pmid:23678545
Rao CV et al. Prevention of familial adenomatous polyp development in APC min mice and azoxymethane-induced colon carcinogenesis in F344 Rats by ω-3 fatty acid rich perilla oil. 2013 Nutr Cancer pmid:23682783
Hutchins AM et al. Daily flaxseed consumption improves glycemic control in obese men and women with pre-diabetes: a randomized study. 2013 Nutr Res pmid:23684438
Simon MC et al. Fatty acids modulate cytokine and chemokine secretion of stimulated human whole blood cultures in diabetes. 2013 Clin. Exp. Immunol. pmid:23600826
Foster M et al. Inflammation markers predict zinc transporter gene expression in women with type 2 diabetes mellitus. 2013 J. Nutr. Biochem. pmid:23643522
Emery JA et al. Δ-6 Desaturase substrate competition: dietary linoleic acid (18:2n-6) has only trivial effects on α-linolenic acid (18:3n-3) bioconversion in the teleost rainbow trout. 2013 PLoS ONE pmid:23460861
Zhao ML et al. Enzymatic production of zero-trans plastic fat rich in α-linolenic acid and medium-chain fatty acids from highly hydrogenated soybean oil, Cinnamomum camphora seed oil, and perilla oil by lipozyme TL IM. 2013 J. Agric. Food Chem. pmid:23350869
Stamey Lanier J et al. Mammary uptake of fatty acids supplied by intravenous triacylglycerol infusion to lactating dairy cows. 2013 Lipids pmid:23504269
Saubeau G et al. Differential induction of oxylipin pathway in potato and tobacco cells by bacterial and oomycete elicitors. 2013 Plant Cell Rep. pmid:23479199
Nozue T et al. Effects of statins on serum n-3 to n-6 polyunsaturated fatty acid ratios in patients with coronary artery disease. 2013 J. Cardiovasc. Pharmacol. Ther. pmid:23324995
Yan W et al. Reply to manuscript IJC-D-12-04197 entitled "Does alpha-lipoic acid treatment play a role on oxidative stress and insulin resistance in overweight/obese patients?" by MD Turgay Ulas. 2013 Int. J. Cardiol. pmid:23313466
Yan W et al. Effect of oral ALA supplementation on oxidative stress and insulin sensitivity among overweight/obese adults: a double-blinded, randomized, controlled, cross-over intervention trial. 2013 Int. J. Cardiol. pmid:23102606
Walker CG et al. Stearidonic acid as a supplemental source of ω-3 polyunsaturated fatty acids to enhance status for improved human health. 2013 Nutrition pmid:23102888
Cao AH et al. Composition of long chain polyunsaturated fatty acids (LC-PUFAs) in different encephalic regions and its association with behavior in spontaneous hypertensive rat (SHR). 2013 Brain Res. pmid:23811335
Moloney AP et al. Colour of fat, and colour, fatty acid composition and sensory characteristics of muscle from heifers offered alternative forages to grass silage in a finishing ration. 2013 Meat Sci. pmid:23806853
Zong G et al. Effects of flaxseed supplementation on erythrocyte fatty acids and multiple cardiometabolic biomarkers among Chinese with risk factors of metabolic syndrome. 2013 Eur J Nutr pmid:23179200
Lagarde M et al. Lipidomics of essential fatty acids and oxygenated metabolites. 2013 Mol Nutr Food Res pmid:23818385
Perga ME et al. Are cyanobacterial blooms trophic dead ends? 2013 Oecologia pmid:23129401
Gregory MK et al. Functional characterization of the chicken fatty acid elongases. 2013 J. Nutr. pmid:23173174
Tu WC et al. Dietary alpha-linolenic acid does not enhance accumulation of omega-3 long-chain polyunsaturated fatty acids in barramundi (Lates calcarifer). 2013 Comp. Biochem. Physiol. B, Biochem. Mol. Biol. pmid:23085323
Van Ba H et al. Significant influence of particular unsaturated fatty acids and pH on the volatile compounds in meat-like model systems. 2013 Meat Sci. pmid:23632107
Poudyal H et al. Effects of ALA, EPA and DHA in high-carbohydrate, high-fat diet-induced metabolic syndrome in rats. 2013 J. Nutr. Biochem. pmid:23026492
Yang YX et al. Effects of duodenal infusion of free α-linolenic acid on the plasma and milk proteome of lactating dairy cows. 2013 Animal pmid:23031206
Blanchard H et al. Comparative effects of well-balanced diets enriched in α-linolenic or linoleic acids on LC-PUFA metabolism in rat tissues. 2013 Prostaglandins Leukot. Essent. Fatty Acids pmid:23579035
Hawkins A et al. Effects of urea formaldehyde condensation polymer treatment of flaxseed on ruminal digestion and lactation in dairy cows. 2013 J. Dairy Sci. pmid:23548281
Lai YH et al. Association of dietary omega-3 fatty acids with prevalence of metabolic syndrome: the National Heart, Lung, and Blood Institute Family Heart Study. 2013 Clin Nutr pmid:23711994
Sun L et al. The neuroprotective effects of Coccomyxa gloeobotrydiformis on the ischemic stroke in a rat model. 2013 Int. J. Biol. Sci. pmid:23983614
Kwon TY et al. Headspace-solid phase microextraction-gas chromatography-tandem mass spectrometry (HS-SPME-GC-MS2) method for the determination of pyrazines in perilla seed oils: impact of roasting on the pyrazines in perilla seed oils. 2013 J. Agric. Food Chem. pmid:23968142
Lund AS et al. N-3 polyunsaturated fatty acids, body fat and inflammation. 2013 Obes Facts pmid:23970146
Lagunas B et al. A temporal regulatory mechanism controls the different contribution of endoplasmic reticulum and plastidial ω-3 desaturases to trienoic fatty acid content during leaf development in soybean (Glycine max cv Volania). 2013 Phytochemistry pmid:23928132
Yu X et al. α-Linolenic acid attenuates doxorubicin-induced cardiotoxicity in rats through suppression of oxidative stress and apoptosis. 2013 Acta Biochim. Biophys. Sin. (Shanghai) pmid:23896563
Egusa Saiga A and Nishimura T Antioxidative properties of peptides obtained from porcine myofibrillar proteins by a protease treatment in an Fe (II)-induced aqueous lipid peroxidation system. 2013 Biosci. Biotechnol. Biochem. pmid:24200778
Grindel A et al. Cheek cell fatty acids reflect n-3 PUFA in blood fractions during linseed oil supplementation: a controlled human intervention study. 2013 Lipids Health Dis pmid:24229084
Afitlhile M et al. A mutant of the Arabidopsis thaliana TOC159 gene accumulates reduced levels of linolenic acid and monogalactosyldiacylglycerol. 2013 Plant Physiol. Biochem. pmid:24184455
Ma T et al. Effect of droplet size on autoxidation rates of methyl linoleate and α-linolenate in an oil-in-water emulsion. 2013 J Oleo Sci pmid:24292352
Lau BY et al. Investigating the role of polyunsaturated fatty acids in bone development using animal models. 2013 Molecules pmid:24248147
Sonne DP and Knop FK Cardiovascular effects of alpha-linolenic acid--a possible role of glucagon-like peptide-1. 2013 Exp. Biol. Med. (Maywood) pmid:24174423
Hoque M et al. Oleic acid may be the key contributor in the BAMLET-induced erythrocyte hemolysis and tumoricidal action. 2013 PLoS ONE pmid:24039698
Moallem U et al. Dietary α-linolenic acid from flaxseed oil improved folliculogenesis and IVF performance in dairy cows, similar to eicosapentaenoic and docosahexaenoic acids from fish oil. 2013 Reproduction pmid:24062566
Arya E et al. Effect of Perilla frutescens fixed oil on experimental esophagitis in albino Wistar rats. 2013 Biomed Res Int pmid:24027769
Carotenuto F et al. A diet supplemented with ALA-rich flaxseed prevents cardiomyocyte apoptosis by regulating caveolin-3 expression. 2013 Cardiovasc. Res. pmid:24042018
Zhang W et al. Alpha-linolenic acid exerts an endothelial protective effect against high glucose injury via PI3K/Akt pathway. 2013 PLoS ONE pmid:23861910
Randall KM et al. Effects of dietary supplementation of coriander oil, in canola oil diets, on the metabolism of [1-(14)C] 18:3n-3 and [1-(14)C] 18:2n-6 in rainbow trout hepatocytes. 2013 Comp. Biochem. Physiol. B, Biochem. Mol. Biol. pmid:23867781
Warstedt K and Duchén K Increased linoleic acid/α-linolenic acid ratio in Swedish cord blood samples collected between 1985 and 2005. 2013 Eur J Nutr pmid:22584414
Oliva ME et al. Dietary Salba (Salvia hispanica L) seed rich in α-linolenic acid improves adipose tissue dysfunction and the altered skeletal muscle glucose and lipid metabolism in dyslipidemic insulin-resistant rats. 2013 Prostaglandins Leukot. Essent. Fatty Acids pmid:24120122
Patarra RF et al. Fatty acid composition of selected macrophytes. 2013 Nat. Prod. Res. pmid:22591127
Yang Z and Huffman SL Modelling linoleic acid and α-linolenic acid requirements for infants and young children in developing countries. 2013 Matern Child Nutr pmid:23167585
Dai J et al. Effects of polyunsaturated fatty acids on the growth of gastric cancer cells in vitro. 2013 Lipids Health Dis pmid:23663688
Khaw KT Dietary fats and breast cancer risk. 2013 BMJ pmid:23861431
Ogata F et al. Study on analysis of waste edible oil with deterioration and removal of acid value, carbonyl value, and free fatty acid by a food additive (calcium silicate). 2013 J Oleo Sci pmid:23391535
Ghisolfi J et al. Nutrient intakes of children aged 1-2 years as a function of milk consumption, cows' milk or growing-up milk. 2013 Public Health Nutr pmid:23098567
Katrangi W et al. Interactions of linoleic and alpha-linolenic acids in the development of fatty acid alterations in cystic fibrosis. 2013 Lipids pmid:23440519
Tu WC et al. Correlations between blood and tissue omega-3 LCPUFA status following dietary ALA intervention in rats. 2013 Prostaglandins Leukot. Essent. Fatty Acids pmid:22521090
Yi LT et al. Essential oil of Perilla frutescens-induced change in hippocampal expression of brain-derived neurotrophic factor in chronic unpredictable mild stress in mice. 2013 J Ethnopharmacol pmid:23506995
Gao F et al. Aging decreases rate of docosahexaenoic acid synthesis-secretion from circulating unesterified α-linolenic acid by rat liver. 2013 Age (Dordr) pmid:22388930
Kiernan M et al. The effect of the in vitro supplementation of exogenous long-chain fatty acids on bovine sperm cell function. 2013 Reprod. Fertil. Dev. pmid:23036717
Arm JP et al. Impact of botanical oils on polyunsaturated fatty acid metabolism and leukotriene generation in mild asthmatics. 2013 Lipids Health Dis pmid:24088297
Meijerink J et al. N-Acyl amines of docosahexaenoic acid and other n-3 polyunsatured fatty acids - from fishy endocannabinoids to potential leads. 2013 Br. J. Pharmacol. pmid:23088259
Chechetkin IR et al. Isolation and structure elucidation of linolipins C and D, complex oxylipins from flax leaves. 2013 Phytochemistry pmid:24042063
Vaezi R et al. Identification and functional characterization of genes encoding omega-3 polyunsaturated fatty acid biosynthetic activities from unicellular microalgae. 2013 Mar Drugs pmid:24351909
Brouwer IA et al. Effect of alpha linolenic acid supplementation on serum prostate specific antigen (PSA): results from the alpha omega trial. 2013 PLoS ONE pmid:24349086
Zhang W et al. Alpha-linolenic acid intake prevents endothelial dysfunction in high-fat diet-fed streptozotocin rats and underlying mechanisms. 2013 VASA pmid:24220118
Rodriguez-Leyva D et al. Potent antihypertensive action of dietary flaxseed in hypertensive patients. 2013 Hypertension pmid:24126178
Al-Bishri WM Favorable effects of flaxseed supplemented diet on liver and kidney functions in hypertensive Wistar rats. 2013 J Oleo Sci pmid:24005015
Niculescu MD et al. Perinatal manipulation of α-linolenic acid intake induces epigenetic changes in maternal and offspring livers. 2013 FASEB J. pmid:22997227
Meyer BJ et al. Assessing long-chain ω-3 polyunsaturated fatty acids: a tailored food-frequency questionnaire is better. 2013 Nutrition pmid:22929186
Shin JA et al. Preparation of recombined milk using modified butterfats containing α-linolenic acid. 2013 J. Food Sci. pmid:23278855
Yang D et al. Antioxidative activities of Ginkgo biloba extract on oil/water emulsion system prepared from an enzymatically modified lipid containing alpha-linolenic acid. 2013 J. Food Sci. pmid:23278764
Caligiuri SP et al. Dietary linoleic acid and α-linolenic acid differentially affect renal oxylipins and phospholipid fatty acids in diet-induced obese rats. 2013 J. Nutr. pmid:23902961
Shibata E et al. Free fatty acids inhibit protein tyrosine phosphatase 1B and activate Akt. 2013 Cell. Physiol. Biochem. pmid:24107614
Reinders I et al. Associations of serum n-3 and n-6 polyunsaturated fatty acids with echocardiographic measures among older adults: the Hoorn Study. 2013 Eur J Clin Nutr pmid:24084512
Smink W et al. Effect of intake of linoleic acid and α-linolenic acid levels on conversion into long-chain polyunsaturated fatty acids in backfat and in intramuscular fat of growing pigs. 2013 J Anim Physiol Anim Nutr (Berl) pmid:22463497
Gibson RA et al. Docosahexaenoic acid synthesis from alpha-linolenic acid is inhibited by diets high in polyunsaturated fatty acids. 2013 Prostaglandins Leukot. Essent. Fatty Acids pmid:22515943
Benbrook CM et al. Organic production enhances milk nutritional quality by shifting fatty acid composition: a United States-wide, 18-month study. 2013 PLoS ONE pmid:24349282
de Oliveira Otto MC et al. Circulating and dietary omega-3 and omega-6 polyunsaturated fatty acids and incidence of CVD in the Multi-Ethnic Study of Atherosclerosis. 2013 J Am Heart Assoc pmid:24351702
Delplanque B et al. A dairy fat matrix providing alpha-linolenic acid (ALA) is better than a vegetable fat mixture to increase brain DHA accretion in young rats. 2013 Prostaglandins Leukot. Essent. Fatty Acids pmid:22884780
Gladine C et al. Optimized rapeseed oil enriched with healthy micronutrients: a relevant nutritional approach to prevent cardiovascular diseases. Results of the Optim'Oils randomized intervention trial. 2013 J. Nutr. Biochem. pmid:22784432
Turk HF et al. Inhibitory effects of omega-3 fatty acids on injury-induced epidermal growth factor receptor transactivation contribute to delayed wound healing. 2013 Am. J. Physiol., Cell Physiol. pmid:23426968
Rahman H et al. Development of low-linolenic acid Brassica oleracea lines through seed mutagenesis and molecular characterization of mutants. 2013 Theor. Appl. Genet. pmid:23475317
Wei M et al. Perilla oil and exercise decrease expressions of tumor necrosis factor-alpha, plasminogen activator inhibitor-1 and highly sensitive C-reactive protein in patients with hyperlipidemia. 2013 J Tradit Chin Med pmid:23789212
Esselburn KM et al. Intake of specific fatty acids and fat alters growth, health, and titers following vaccination in dairy calves. 2013 J. Dairy Sci. pmid:23810586