alpha-linolenic acid

Alpha-linolenic acid is a lipid of Fatty Acyls (FA) class. Alpha-linolenic acid is associated with abnormalities such as Coronary heart disease, abnormal fragmented structure, Arterial thrombosis and Subarachnoid Hemorrhage. The involved functions are known as Anabolism, Signal, Transcription, Genetic, Saturated and Regulation. Alpha-linolenic acid often locates in Blood, Body tissue, Plasma membrane, Hepatic and peroxisome. The associated genes with alpha-linolenic acid are FATE1 gene, volicitin, CYP2U1 gene, CYP1A2 gene and CYP2J2 gene. The related lipids are Fatty Acids, Dietary Fatty Acid, stearidonic acid and Fatty Acids, Nonesterified.

Cross Reference

Introduction

To understand associated biological information of alpha-linolenic acid, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with alpha-linolenic acid?

alpha-linolenic acid is suspected in Coronary heart disease, Arterial thrombosis, Subarachnoid Hemorrhage and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with alpha-linolenic acid

MeSH term MeSH ID Detail
Adenocarcinoma D000230 166 associated lipids
Adenoma D000236 40 associated lipids
Adrenoleukodystrophy D000326 29 associated lipids
Amyloidosis D000686 4 associated lipids
Aortic Diseases D001018 11 associated lipids
Arteriosclerosis D001161 86 associated lipids
Arthritis D001168 41 associated lipids
Atrial Fibrillation D001281 16 associated lipids
Autoimmune Diseases D001327 27 associated lipids
Birth Weight D001724 23 associated lipids
Urinary Bladder Neoplasms D001749 7 associated lipids
Body Weight D001835 333 associated lipids
Breast Neoplasms D001943 24 associated lipids
Bronchial Spasm D001986 18 associated lipids
Cat Diseases D002371 12 associated lipids
Cattle Diseases D002418 24 associated lipids
Brain Ischemia D002545 89 associated lipids
Colitis D003092 69 associated lipids
Colonic Neoplasms D003110 161 associated lipids
Conjunctivitis, Allergic D003233 1 associated lipids
Coronary Artery Disease D003324 47 associated lipids
Coronary Disease D003327 70 associated lipids
Cystic Fibrosis D003550 65 associated lipids
Deficiency Diseases D003677 12 associated lipids
Dermatitis D003872 30 associated lipids
Dermatitis, Atopic D003876 19 associated lipids
Diabetes Mellitus D003920 90 associated lipids
Diabetes Mellitus, Experimental D003921 85 associated lipids
Diabetes Mellitus, Type 1 D003922 56 associated lipids
Diabetes Mellitus, Type 2 D003924 87 associated lipids
Diabetic Angiopathies D003925 20 associated lipids
Diabetic Nephropathies D003928 39 associated lipids
Edema D004487 152 associated lipids
Encephalomyelitis, Autoimmune, Experimental D004681 26 associated lipids
Endomyocardial Fibrosis D004719 4 associated lipids
Epilepsy D004827 35 associated lipids
Mental Fatigue D005222 3 associated lipids
Fatty Liver D005234 48 associated lipids
Hearing Loss, High-Frequency D006316 1 associated lipids
Heart Failure D006333 36 associated lipids
Hemolysis D006461 131 associated lipids
Carcinoma, Hepatocellular D006528 140 associated lipids
Hypercholesterolemia D006937 91 associated lipids
Hyperlipidemias D006949 73 associated lipids
Hyperlipidemia, Familial Combined D006950 9 associated lipids
Hypersensitivity D006967 22 associated lipids
Hypersensitivity, Delayed D006968 43 associated lipids
Hypertension D006973 115 associated lipids
Inflammation D007249 119 associated lipids
Insect Bites and Stings D007299 4 associated lipids
Per page 10 20 50 100 | Total 104

PubChem Associated disorders and diseases

What pathways are associated with alpha-linolenic acid

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with alpha-linolenic acid?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with alpha-linolenic acid?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with alpha-linolenic acid?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with alpha-linolenic acid?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with alpha-linolenic acid?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with alpha-linolenic acid

Download all related citations
Per page 10 20 50 100 | Total 2471
Authors Title Published Journal PubMed Link
pmid:26675329
pmid:26674243
Reddy YS et al. Study on Synthesis, Characterization and Antiproliferative Activity of Novel Diisopropylphenyl Esters of Selected Fatty Acids. 2016 J Oleo Sci pmid:26666272
Liu X et al. APA-style human milk fat analogue from silkworm pupae oil: Enzymatic production and improving storage stability using alkyl caffeates. 2015 Sci Rep pmid:26643045
Mata-Pérez C et al. Nitro-Fatty Acids in Plant Signaling: Nitro-Linolenic Acid Induces the Molecular Chaperone Network in Arabidopsis. 2016 Plant Physiol. pmid:26628746
pmid:26617007
pmid:26615102
Sun Y et al. Plasma α-Linolenic and Long-Chain ω-3 Fatty Acids Are Associated with a Lower Risk of Acute Myocardial Infarction in Singapore Chinese Adults. 2016 J. Nutr. pmid:26609174
Park HG et al. Palmitic acid (16:0) competes with omega-6 linoleic and omega-3 ɑ-linolenic acids for FADS2 mediated Δ6-desaturation. 2016 Biochim. Biophys. Acta pmid:26597785
pmid:26595854
pmid:26593580
pmid:26593514
pmid:26584822
pmid:26582578
Piermartiri T et al. α-Linolenic Acid, A Nutraceutical with Pleiotropic Properties That Targets Endogenous Neuroprotective Pathways to Protect against Organophosphate Nerve Agent-Induced Neuropathology. 2015 Molecules pmid:26569216
Fu X et al. Regulation of formation of volatile compounds of tea (Camellia sinensis) leaves by single light wavelength. 2015 Sci Rep pmid:26567525
pmid:26561301
pmid:26543039
pmid:26526350
Wright AM et al. Effect of forage type with or without corn supplementation on animal performance, beef fatty acid composition, and palatability. 2015 J. Anim. Sci. pmid:26523597
pmid:26521211
pmid:26514651
pmid:26512548
Shi H et al. Molecular mechanism of substrate specificity for delta 6 desaturase from Mortierella alpina and Micromonas pusilla. 2015 J. Lipid Res. pmid:26486975
pmid:26471680
Conde-Sieira M et al. Hypothalamic fatty acid sensing in Senegalese sole (Solea senegalensis): response to long-chain saturated, monounsaturated, and polyunsaturated (n-3) fatty acids. 2015 Am. J. Physiol. Regul. Integr. Comp. Physiol. pmid:26468264
pmid:26444910
pmid:26440049
Dodington DW et al. Higher Intakes of Fruits and Vegetables, β-Carotene, Vitamin C, α-Tocopherol, EPA, and DHA Are Positively Associated with Periodontal Healing after Nonsurgical Periodontal Therapy in Nonsmokers but Not in Smokers. 2015 J. Nutr. pmid:26423734
Dal Bello B et al. Healthy yogurt fortified with n-3 fatty acids from vegetable sources. 2015 J. Dairy Sci. pmid:26409962
Liao K et al. Dietary Olive and Perilla Oils Affect Liver Mitochondrial DNA Methylation in Large Yellow Croakers. 2015 J. Nutr. pmid:26400965
pmid:26399745
pmid:26395388
pmid:26387026
pmid:26386148
Kim KR et al. Selective Production of 9R-Hydroxy-10E,12Z,15Z-Octadecatrienoic Acid from α-Linolenic Acid in Perilla Seed Oil Hydrolyzate by a Lipoxygenase from Nostoc Sp. SAG 25.82. 2015 PLoS ONE pmid:26379279
pmid:26378118
pmid:26364843
pmid:26363928
pmid:26350254
Bobiński R and Mikulska M The ins and outs of maternal-fetal fatty acid metabolism. 2015 Acta Biochim. Pol. pmid:26345097
pmid:26328539
Mansara PP et al. Differential Ratios of Omega Fatty Acids (AA/EPA+DHA) Modulate Growth, Lipid Peroxidation and Expression of Tumor Regulatory MARBPs in Breast Cancer Cell Lines MCF7 and MDA-MB-231. 2015 PLoS ONE pmid:26325577
pmid:26300470
Imran M et al. Impact of extrusion processing conditions on lipid peroxidation and storage stability of full-fat flaxseed meal. 2015 Lipids Health Dis pmid:26286266
He J et al. Correlation of polyunsaturated fatty acids with the cold adaptation of Rhodotorula glutinis. 2015 Yeast pmid:26284451
Mason JK et al. α-linolenic acid and docosahexaenoic acid, alone and combined with trastuzumab, reduce HER2-overexpressing breast cancer cell growth but differentially regulate HER2 signaling pathways. 2015 Lipids Health Dis pmid:26282560
pmid:26280128
pmid:26277770
pmid:26271617
pmid:26268732
pmid:26264916
pmid:26262674
pmid:26249647
Valenzuela R et al. Modification of Docosahexaenoic Acid Composition of Milk from Nursing Women Who Received Alpha Linolenic Acid from Chia Oil during Gestation and Nursing. 2015 Nutrients pmid:26247968
Pan P et al. Black raspberries suppress colonic adenoma development in ApcMin/+ mice: relation to metabolite profiles. 2015 Carcinogenesis pmid:26246425
Cole C et al. Arum Palaestinum with isovanillin, linolenic acid and β-sitosterol inhibits prostate cancer spheroids and reduces the growth rate of prostate tumors in mice. 2015 BMC Complement Altern Med pmid:26243305
Jubie S et al. Isolation of methyl gamma linolenate from Spirulina platensis using flash chromatography and its apoptosis inducing effect. 2015 BMC Complement Altern Med pmid:26238515
pmid:26189725
pmid:26188993
pmid:26187936
Han H et al. Flaxseed Oil Containing α -Linolenic Acid Ester of Plant Sterol Improved Atherosclerosis in ApoE Deficient Mice. 2015 Oxid Med Cell Longev pmid:26180602
pmid:26174350
Chen W et al. Effect of flaxseed on the fatty acid profile of egg yolk and antioxidant status of their neonatal offspring in Huoyan geese. 2015 Animal pmid:26173627
pmid:26169870
pmid:26151719
pmid:26142845
pmid:26134471
pmid:26125601
pmid:26092420
Sun L et al. Coccomyxa Gloeobotrydiformis Improves Learning and Memory in Intrinsic Aging Rats. 2015 Int. J. Biol. Sci. pmid:26078724
Folino A et al. Alpha-linolenic acid protects against cardiac injury and remodelling induced by beta-adrenergic overstimulation. 2015 Food Funct pmid:26068025
pmid:26044769
Shang X et al. Dietary α-Linolenic Acid and Total ω-3 Fatty Acids Are Inversely Associated with Abdominal Aortic Calcification in Older Women, but Not in Older Men. 2015 J. Nutr. pmid:26041673
pmid:26041199
pmid:26011096
pmid:25997623
Nieman DC et al. No positive influence of ingesting chia seed oil on human running performance. 2015 Nutrients pmid:25988762
pmid:25981324
Shivashankar S and Sumathi M Do seed VLCFAs trigger spongy tissue formation in Alphonso mango by inducing germination? 2015 J. Biosci. pmid:25963264
pmid:25952888
pmid:25951928
pmid:25951778
pmid:25935580
pmid:25933532
pmid:25933493
Perumalsamy H et al. Larvicidal activity and possible mode of action of four flavonoids and two fatty acids identified in Millettia pinnata seed toward three mosquito species. 2015 Parasit Vectors pmid:25928224
pmid:25923344
pmid:25920465
Domenichiello AF et al. Is docosahexaenoic acid synthesis from α-linolenic acid sufficient to supply the adult brain? 2015 Prog. Lipid Res. pmid:25920364
pmid:25916258
pmid:25906856
Kawakami Y et al. Flaxseed oil intake reduces serum small dense low-density lipoprotein concentrations in Japanese men: a randomized, double blind, crossover study. 2015 Nutr J pmid:25896182
Hadjighassem M et al. Oral consumption of α-linolenic acid increases serum BDNF levels in healthy adult humans. 2015 Nutr J pmid:25889793
Shomonov-Wagner L et al. Alpha linolenic acid in maternal diet halts the lipid disarray due to saturated fatty acids in the liver of mice offspring at weaning. 2015 Lipids Health Dis pmid:25889505
pmid:25885355
pmid:25866933
pmid:25865679
pmid:25842322
pmid:25841249