DHA

Dha is a lipid of Fatty Acyls (FA) class. Dha is associated with abnormalities such as Atherosclerosis, Consumption-archaic term for TB, Chronic disease, Cardiovascular Diseases and Diabetes Mellitus, Non-Insulin-Dependent. The involved functions are known as Inflammation, Oxidation, fatty acid oxidation, Fatty Acid Metabolism and Lipid Metabolism. Dha often locates in Hepatic, Protoplasm, Mucous Membrane, Epithelium and outer membrane. The associated genes with DHA are IMPACT gene, FATE1 gene, GAPDH gene, THOC4 gene and SLC33A1 gene. The related lipids are stearidonic acid, Fatty Acids, Total cholesterol, Lipopolysaccharides and Dietary Fatty Acid. The related experimental models are Mouse Model, Transgenic Model, Animal Disease Models and Arthritis, Experimental.

Cross Reference

Introduction

To understand associated biological information of DHA, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with DHA?

DHA is suspected in Cardiovascular Diseases, Obesity, Ischemia, Hypertensive disease, Coronary Arteriosclerosis, Cerebrovascular accident and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with DHA

MeSH term MeSH ID Detail
Abortion, Habitual D000026 5 associated lipids
Acquired Immunodeficiency Syndrome D000163 12 associated lipids
Adenocarcinoma D000230 166 associated lipids
Adrenoleukodystrophy D000326 29 associated lipids
Albinism D000417 3 associated lipids
Alzheimer Disease D000544 76 associated lipids
Anaphylaxis D000707 35 associated lipids
Anemia D000740 21 associated lipids
Anemia, Sickle Cell D000755 34 associated lipids
Angina Pectoris D000787 27 associated lipids
Per page 10 20 50 100 | Total 240

PubChem Associated disorders and diseases

What pathways are associated with DHA

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with DHA?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with DHA?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with DHA?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with DHA?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with DHA?

Mouse Model

Mouse Model are used in the study 'Homeostatic regulation of photoreceptor cell integrity: significance of the potent mediator neuroprotectin D1 biosynthesized from docosahexaenoic acid: the Proctor Lecture.' (Bazan NG, 2007), Mouse Model are used in the study 'Omega-3 fatty acids EPA and DHA: health benefits throughout life.' (Swanson D et al., 2012), Mouse Model are used in the study 'Docosahexaenoic acid attenuates hepatic inflammation, oxidative stress, and fibrosis without decreasing hepatosteatosis in a Ldlr(-/-) mouse model of western diet-induced nonalcoholic steatohepatitis.' (Depner CM et al., 2013) and Mouse Model are used in the study 'Wax esters from the marine copepod Calanus finmarchicus reduce diet-induced obesity and obesity-related metabolic disorders in mice.' (Höper AC et al., 2014).

Transgenic Model

Transgenic Model are used in the study 'Loss of MAP function leads to hippocampal synapse loss and deficits in the Morris Water Maze with aging.' (Ma QL et al., 2014).

Animal Disease Models

Animal Disease Models are used in the study 'Fish oil increases muscle protein mass and modulates Akt/FOXO, TLR4, and NOD signaling in weanling piglets after lipopolysaccharide challenge.' (Liu Y et al., 2013).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with DHA

Download all related citations
Per page 10 20 50 100 | Total 7336
Authors Title Published Journal PubMed Link
Fleming JA and Kris-Etherton PM The evidence for α-linolenic acid and cardiovascular disease benefits: Comparisons with eicosapentaenoic acid and docosahexaenoic acid. 2014 Adv Nutr pmid:25398754
Gilbert K et al. Resolvin D1, a metabolite of omega-3 polyunsaturated fatty acid, decreases post-myocardial infarct depression. 2014 Mar Drugs pmid:25402828
Metcalf RG et al. U-shaped relationship between tissue docosahexaenoic acid and atrial fibrillation following cardiac surgery. 2014 Eur J Clin Nutr pmid:24169465
Papanikolaou Y et al. U.S. adults are not meeting recommended levels for fish and omega-3 fatty acid intake: results of an analysis using observational data from NHANES 2003-2008. 2014 Nutr J pmid:24694001
Ottosson NE et al. Drug-induced ion channel opening tuned by the voltage sensor charge profile. 2014 J. Gen. Physiol. pmid:24420769
Hong SH et al. Docosahexaenoic acid confers enduring neuroprotection in experimental stroke. 2014 J. Neurol. Sci. pmid:24433927
Marklund M et al. A dietary biomarker approach captures compliance and cardiometabolic effects of a healthy Nordic diet in individuals with metabolic syndrome. 2014 J. Nutr. pmid:25080537
Sokolov EI et al. [Value of Fatty acids in formation of thrombotic status in patients with ischemic heart disease]. 2014 Kardiologiia pmid:25177882
Aslan M et al. A pilot study investigating early postoperative changes of plasma polyunsaturated fatty acids after laparoscopic sleeve gastrectomy. 2014 Lipids Health Dis pmid:24694037
Gregory MK and James MJ Functional characterization of the duck and turkey fatty acyl elongase enzymes ELOVL5 and ELOVL2. 2014 J. Nutr. pmid:24919687
Dai XW et al. Erythrocyte membrane n-3 fatty acid levels and carotid atherosclerosis in Chinese men and women. 2014 Atherosclerosis pmid:24401220
Arnold C et al. Regarding macular xanthophylls and ω-3 long-chain polyunsaturated fatty acids in age-related macular degeneration--reply. 2014 JAMA Ophthalmol pmid:24525936
Brasky TM et al. Associations of long-chain ω-3 fatty acids and fish intake with endometrial cancer risk in the VITamins And Lifestyle cohort. 2014 Am. J. Clin. Nutr. pmid:24500149
Li X et al. Production of structured phosphatidylcholine with high content of DHA/EPA by immobilized phospholipase A₁-catalyzed transesterification. 2014 Int J Mol Sci pmid:25170810
Colas RA et al. Identification and signature profiles for pro-resolving and inflammatory lipid mediators in human tissue. 2014 Am. J. Physiol., Cell Physiol. pmid:24696140
Liu Y et al. The fish oil ingredient, docosahexaenoic acid, activates cytosolic phospholipase Aâ‚‚ via GPR120 receptor to produce prostaglandin Eâ‚‚ and plays an anti-inflammatory role in macrophages. 2014 Immunology pmid:24673159
Kim W et al. Dietary fish oil and DHA down-regulate antigen-activated CD4+ T-cells while promoting the formation of liquid-ordered mesodomains. 2014 Br. J. Nutr. pmid:23962659
Zhang B et al. Polyunsaturated fatty acids for the prevention of atrial fibrillation after cardiac surgery: an updated meta-analysis of randomized controlled trials. 2014 J Cardiol pmid:23911138
Liu M et al. Protectin DX, a double lipoxygenase product of DHA, inhibits both ROS production in human neutrophils and cyclooxygenase activities. 2014 Lipids pmid:24254970
James MJ et al. Pitfalls in the use of randomised controlled trials for fish oil studies with cardiac patients. 2014 Br. J. Nutr. pmid:24933212