DHA

Dha is a lipid of Fatty Acyls (FA) class. Dha is associated with abnormalities such as Atherosclerosis, Consumption-archaic term for TB, Chronic disease, Cardiovascular Diseases and Diabetes Mellitus, Non-Insulin-Dependent. The involved functions are known as Inflammation, Oxidation, fatty acid oxidation, Fatty Acid Metabolism and Lipid Metabolism. Dha often locates in Hepatic, Protoplasm, Mucous Membrane, Epithelium and outer membrane. The associated genes with DHA are IMPACT gene, FATE1 gene, GAPDH gene, THOC4 gene and SLC33A1 gene. The related lipids are stearidonic acid, Fatty Acids, Total cholesterol, Lipopolysaccharides and Dietary Fatty Acid. The related experimental models are Mouse Model, Transgenic Model, Animal Disease Models and Arthritis, Experimental.

Cross Reference

Introduction

To understand associated biological information of DHA, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with DHA?

DHA is suspected in Cardiovascular Diseases, Obesity, Ischemia, Hypertensive disease, Coronary Arteriosclerosis, Cerebrovascular accident and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with DHA

MeSH term MeSH ID Detail
Hemolysis D006461 131 associated lipids
Stomach Ulcer D013276 75 associated lipids
Kidney Failure, Chronic D007676 51 associated lipids
Diabetes Mellitus D003920 90 associated lipids
Hypoxia D000860 23 associated lipids
Arrhythmias, Cardiac D001145 42 associated lipids
Neovascularization, Pathologic D009389 39 associated lipids
Adenocarcinoma D000230 166 associated lipids
Breast Neoplasms D001943 24 associated lipids
Pain D010146 64 associated lipids
Autoimmune Diseases D001327 27 associated lipids
Lupus Erythematosus, Systemic D008180 43 associated lipids
Lung Diseases D008171 37 associated lipids
Lung Neoplasms D008175 171 associated lipids
Pulmonary Fibrosis D011658 24 associated lipids
Burns D002056 34 associated lipids
Pancreatic Neoplasms D010190 77 associated lipids
Inflammation D007249 119 associated lipids
Reperfusion Injury D015427 65 associated lipids
Colitis D003092 69 associated lipids
Colonic Neoplasms D003110 161 associated lipids
Diabetes Mellitus, Type 1 D003922 56 associated lipids
Diabetes Mellitus, Type 2 D003924 87 associated lipids
Diabetic Retinopathy D003930 39 associated lipids
Fatty Liver D005234 48 associated lipids
Cataract D002386 34 associated lipids
Diabetes Mellitus, Experimental D003921 85 associated lipids
Mammary Neoplasms, Experimental D008325 67 associated lipids
Body Weight D001835 333 associated lipids
Edema D004487 152 associated lipids
Precancerous Conditions D011230 48 associated lipids
Carcinoma D002277 18 associated lipids
Hypotension D007022 41 associated lipids
Acute Kidney Injury D058186 34 associated lipids
Dementia D003704 2 associated lipids
Heart Failure D006333 36 associated lipids
Coronary Disease D003327 70 associated lipids
Prostatic Neoplasms D011471 126 associated lipids
Hypersensitivity D006967 22 associated lipids
Brain Neoplasms D001932 15 associated lipids
Hypothyroidism D007037 32 associated lipids
Vision Disorders D014786 10 associated lipids
Melanoma D008545 69 associated lipids
Pain, Postoperative D010149 13 associated lipids
Asthma D001249 52 associated lipids
Kidney Diseases D007674 29 associated lipids
Weight Gain D015430 101 associated lipids
Hypersensitivity, Delayed D006968 43 associated lipids
Glioma D005910 112 associated lipids
Cell Transformation, Neoplastic D002471 126 associated lipids
Hypercholesterolemia D006937 91 associated lipids
Liver Neoplasms, Experimental D008114 46 associated lipids
Bone Diseases, Metabolic D001851 9 associated lipids
Obesity D009765 29 associated lipids
Thrombosis D013927 49 associated lipids
Uterine Neoplasms D014594 18 associated lipids
Peritonitis D010538 38 associated lipids
Proteinuria D011507 30 associated lipids
Adrenoleukodystrophy D000326 29 associated lipids
Refsum Disease D012035 19 associated lipids
Alzheimer Disease D000544 76 associated lipids
Arteriosclerosis D001161 86 associated lipids
Leukemia D007938 74 associated lipids
Magnesium Deficiency D008275 9 associated lipids
Neuroblastoma D009447 66 associated lipids
Carcinoma, Hepatocellular D006528 140 associated lipids
Liver Cirrhosis D008103 67 associated lipids
Colorectal Neoplasms D015179 10 associated lipids
Optic Nerve Diseases D009901 6 associated lipids
Cholestasis D002779 23 associated lipids
Fibrosis D005355 23 associated lipids
Anemia, Sickle Cell D000755 34 associated lipids
Lipid Metabolism, Inborn Errors D008052 26 associated lipids
Glomerulonephritis D005921 35 associated lipids
Sepsis D018805 11 associated lipids
Acquired Immunodeficiency Syndrome D000163 12 associated lipids
Psoriasis D011565 47 associated lipids
Pseudomonas Infections D011552 25 associated lipids
Brain Infarction D020520 17 associated lipids
Infarction, Middle Cerebral Artery D020244 35 associated lipids
Stroke D020521 32 associated lipids
Hyperlipoproteinemia Type II D006938 22 associated lipids
Hyperlipoproteinemia Type IV D006953 6 associated lipids
Polycystic Ovary Syndrome D011085 14 associated lipids
Brain Ischemia D002545 89 associated lipids
Leukemia, Myeloid D007951 52 associated lipids
Epilepsy D004827 35 associated lipids
Seizures D012640 87 associated lipids
Nerve Degeneration D009410 53 associated lipids
Peroxisomal Disorders D018901 5 associated lipids
Birth Weight D001724 23 associated lipids
Leukemia, Basophilic, Acute D015471 9 associated lipids
Cystic Fibrosis D003550 65 associated lipids
Hypertension D006973 115 associated lipids
Cerebrovascular Disorders D002561 25 associated lipids
Periodontitis D010518 22 associated lipids
Dermatitis D003872 30 associated lipids
Leukemia, Experimental D007942 42 associated lipids
Leukemia, Lymphocytic, Chronic, B-Cell D015451 25 associated lipids
Shock D012769 11 associated lipids
Per page 10 20 50 100 | Total 240

PubChem Associated disorders and diseases

What pathways are associated with DHA

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with DHA?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with DHA?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with DHA?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with DHA?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with DHA?

Mouse Model

Mouse Model are used in the study 'Homeostatic regulation of photoreceptor cell integrity: significance of the potent mediator neuroprotectin D1 biosynthesized from docosahexaenoic acid: the Proctor Lecture.' (Bazan NG, 2007), Mouse Model are used in the study 'Omega-3 fatty acids EPA and DHA: health benefits throughout life.' (Swanson D et al., 2012), Mouse Model are used in the study 'Docosahexaenoic acid attenuates hepatic inflammation, oxidative stress, and fibrosis without decreasing hepatosteatosis in a Ldlr(-/-) mouse model of western diet-induced nonalcoholic steatohepatitis.' (Depner CM et al., 2013) and Mouse Model are used in the study 'Wax esters from the marine copepod Calanus finmarchicus reduce diet-induced obesity and obesity-related metabolic disorders in mice.' (Höper AC et al., 2014).

Transgenic Model

Transgenic Model are used in the study 'Loss of MAP function leads to hippocampal synapse loss and deficits in the Morris Water Maze with aging.' (Ma QL et al., 2014).

Animal Disease Models

Animal Disease Models are used in the study 'Fish oil increases muscle protein mass and modulates Akt/FOXO, TLR4, and NOD signaling in weanling piglets after lipopolysaccharide challenge.' (Liu Y et al., 2013).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with DHA

Download all related citations
Per page 10 20 50 100 | Total 7336
Authors Title Published Journal PubMed Link
Midtbø LK et al. Intake of farmed Atlantic salmon fed soybean oil increases hepatic levels of arachidonic acid-derived oxylipins and ceramides in mice. 2015 J. Nutr. Biochem. pmid:25776459
Prieto P et al. Activation of autophagy in macrophages by pro-resolving lipid mediators. 2015 Autophagy pmid:26506892
Wu A et al. Curcumin boosts DHA in the brain: Implications for the prevention of anxiety disorders. 2015 Biochim. Biophys. Acta pmid:25550171
Cox R et al. Resolvins Decrease Oxidative Stress Mediated Macrophage and Epithelial Cell Interaction through Decreased Cytokine Secretion. 2015 PLoS ONE pmid:26317859
Croasdell A et al. Resolvins attenuate inflammation and promote resolution in cigarette smoke-exposed human macrophages. 2015 Am. J. Physiol. Lung Cell Mol. Physiol. pmid:26301452
Rossi S et al. Interplay between Intravitreal RvD1 and Local Endogenous Sirtuin-1 in the Protection from Endotoxin-Induced Uveitis in Rats. 2015 Mediators Inflamm. pmid:26180376
de Oliveira JR et al. AT-RvD1 modulates CCL-2 and CXCL-8 production and NF-κB, STAT-6, SOCS1, and SOCS3 expression on bronchial epithelial cells stimulated with IL-4. 2015 Biomed Res Int pmid:26075216
Shevalye H et al. Effect of enriching the diet with menhaden oil or daily treatment with resolvin D1 on neuropathy in a mouse model of type 2 diabetes. 2015 J. Neurophysiol. pmid:25925322
Kain V et al. Resolvin D1 activates the inflammation resolving response at splenic and ventricular site following myocardial infarction leading to improved ventricular function. 2015 J. Mol. Cell. Cardiol. pmid:25870158
Qin Y et al. Fish Oil Supplements Lower Serum Lipids and Glucose in Correlation with a Reduction in Plasma Fibroblast Growth Factor 21 and Prostaglandin E2 in Nonalcoholic Fatty Liver Disease Associated with Hyperlipidemia: A Randomized Clinical Trial. 2015 PLoS ONE pmid:26226139
Orr SK et al. Proresolving actions of a new resolvin D1 analog mimetic qualifies as an immunoresolvent. 2015 Am. J. Physiol. Lung Cell Mol. Physiol. pmid:25770181
Dalli J et al. Novel proresolving and tissue-regenerative resolvin and protectin sulfido-conjugated pathways. 2015 FASEB J. pmid:25713027
Rossi S et al. Protection from endotoxic uveitis by intravitreal Resolvin D1: involvement of lymphocytes, miRNAs, ubiquitin-proteasome, and M1/M2 macrophages. 2015 Mediators Inflamm. pmid:25684860
Lastrucci C et al. Molecular and cellular profiles of the resolution phase in a damage-associated molecular pattern (DAMP)-mediated peritonitis model and revelation of leukocyte persistence in peritoneal tissues. 2015 FASEB J. pmid:25609430
Cespedes E et al. Adipose tissue n-3 fatty acids and metabolic syndrome. 2015 Eur J Clin Nutr pmid:25097001
Ting HC et al. Polyunsaturated fatty acids incorporation into cardiolipin in H9c2 cardiac myoblast. 2015 J. Nutr. Biochem. pmid:25866137
Valenzuela R et al. Modification of Docosahexaenoic Acid Composition of Milk from Nursing Women Who Received Alpha Linolenic Acid from Chia Oil during Gestation and Nursing. 2015 Nutrients pmid:26247968
Wang H et al. 4-Hydroxy-7-oxo-5-heptenoic Acid (HOHA) Lactone is a Biologically Active Precursor for the Generation of 2-(ω-Carboxyethyl)pyrrole (CEP) Derivatives of Proteins and Ethanolamine Phospholipids. 2015 Chem. Res. Toxicol. pmid:25793308
Akagi D et al. Systemic delivery of proresolving lipid mediators resolvin D2 and maresin 1 attenuates intimal hyperplasia in mice. 2015 FASEB J. pmid:25777995
Aursnes M et al. Synthesis of the 16S,17S-Epoxyprotectin Intermediate in the Biosynthesis of Protectins by Human Macrophages. 2015 J. Nat. Prod. pmid:26580578
Keim SA and Branum AM Dietary intake of polyunsaturated fatty acids and fish among US children 12-60 months of age. 2015 Matern Child Nutr pmid:24034437
Calandria JM et al. The Docosanoid Neuroprotectin D1 Induces TH-Positive Neuronal Survival in a Cellular Model of Parkinson's Disease. 2015 Cell. Mol. Neurobiol. pmid:26047923
Musto AE et al. Hippocampal neuro-networks and dendritic spine perturbations in epileptogenesis are attenuated by neuroprotectin d1. 2015 PLoS ONE pmid:25617763
Dorninger F et al. Homeostasis of phospholipids - The level of phosphatidylethanolamine tightly adapts to changes in ethanolamine plasmalogens. 2015 Biochim. Biophys. Acta pmid:25463479
Barden AE et al. Specialized proresolving lipid mediators in humans with the metabolic syndrome after n-3 fatty acids and aspirin. 2015 Am. J. Clin. Nutr. pmid:26561623
Park CK Maresin 1 Inhibits TRPV1 in Temporomandibular Joint-Related Trigeminal Nociceptive Neurons and TMJ Inflammation-Induced Synaptic Plasticity in the Trigeminal Nucleus. 2015 Mediators Inflamm. pmid:26617436
Krishnamoorthy N et al. Cutting edge: maresin-1 engages regulatory T cells to limit type 2 innate lymphoid cell activation and promote resolution of lung inflammation. 2015 J. Immunol. pmid:25539814
Askari M et al. Tissue fatty acid composition and secretory phospholipase-A2 activity in oral squamous cell carcinoma. 2015 Clin Transl Oncol pmid:25351172
Jones PJ et al. High-oleic canola oil consumption enriches LDL particle cholesteryl oleate content and reduces LDL proteoglycan binding in humans. 2015 Atherosclerosis pmid:25528432
Nury T et al. Induction of oxiapoptophagy on 158N murine oligodendrocytes treated by 7-ketocholesterol-, 7β-hydroxycholesterol-, or 24(S)-hydroxycholesterol: Protective effects of α-tocopherol and docosahexaenoic acid (DHA; C22:6 n-3). 2015 Steroids pmid:25683890
Norris SE et al. Human prefrontal cortex phospholipids containing docosahexaenoic acid increase during normal adult aging, whereas those containing arachidonic acid decrease. 2015 Neurobiol. Aging pmid:25676385
Filipcikova R et al. Lycopene improves the distorted ratio between AA/DHA in the seminal plasma of infertile males and increases the likelihood of successful pregnancy. 2015 Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub pmid:23446211
Li R et al. Enzymatic Synthesis of Refined Olive Oil-Based Structured Lipid Containing Omega -3 and -6 Fatty Acids for Potential Application in Infant Formula. 2015 J. Food Sci. pmid:26408984
Chen CT et al. Plasma non-esterified docosahexaenoic acid is the major pool supplying the brain. 2015 Sci Rep pmid:26511533
Linhartova P and Sampels S Combined incubation of cadmium, docosahexaenoic and eicosapentaenoic acid results in increased uptake of cadmium and elevated docosapentaenoic acid content in hepatocytes in vitro. 2015 Lipids Health Dis pmid:26627047
Holen E et al. Combining eicosapentaenoic acid, decosahexaenoic acid and arachidonic acid, using a fully crossed design, affect gene expression and eicosanoid secretion in salmon head kidney cells in vitro. 2015 Fish Shellfish Immunol. pmid:26003739
Park HG et al. The fatty acid desaturase 2 (FADS2) gene product catalyzes Δ4 desaturation to yield n-3 docosahexaenoic acid and n-6 docosapentaenoic acid in human cells. 2015 FASEB J. pmid:26065859
Lim JY et al. Biological Roles of Resolvins and Related Substances in the Resolution of Pain. 2015 Biomed Res Int pmid:26339646
Hiram R et al. Resolvin E1 normalizes contractility, Ca2+ sensitivity and smooth muscle cell migration rate in TNF-α- and IL-6-pretreated human pulmonary arteries. 2015 Am. J. Physiol. Lung Cell Mol. Physiol. pmid:26320154
Schwager J et al. ω-3 PUFAs and Resveratrol Differently Modulate Acute and Chronic Inflammatory Processes. 2015 Biomed Res Int pmid:26301248
Lucena CF et al. Omega-3 supplementation improves pancreatic islet redox status: in vivo and in vitro studies. 2015 Pancreas pmid:25426612
Katakura M et al. Chronic Arachidonic Acid Administration Decreases Docosahexaenoic Acid- and Eicosapentaenoic Acid-Derived Metabolites in Kidneys of Aged Rats. 2015 PLoS ONE pmid:26485038
Chew EY et al. Effect of Omega-3 Fatty Acids, Lutein/Zeaxanthin, or Other Nutrient Supplementation on Cognitive Function: The AREDS2 Randomized Clinical Trial. 2015 JAMA pmid:26305649
Honda KL et al. Docosahexaenoic acid differentially affects TNFα and IL-6 expression in LPS-stimulated RAW 264.7 murine macrophages. 2015 Prostaglandins Leukot. Essent. Fatty Acids pmid:25921297
Cotogni P et al. The Omega-3 Fatty Acid Docosahexaenoic Acid Modulates Inflammatory Mediator Release in Human Alveolar Cells Exposed to Bronchoalveolar Lavage Fluid of ARDS Patients. 2015 Biomed Res Int pmid:26301250
Dodington DW et al. Higher Intakes of Fruits and Vegetables, β-Carotene, Vitamin C, α-Tocopherol, EPA, and DHA Are Positively Associated with Periodontal Healing after Nonsurgical Periodontal Therapy in Nonsmokers but Not in Smokers. 2015 J. Nutr. pmid:26423734
Bobiński R and Mikulska M The ins and outs of maternal-fetal fatty acid metabolism. 2015 Acta Biochim. Pol. pmid:26345097
Hieda K et al. Pharmacological effect of functional foods with a hypotensive action. 2015 Nippon Yakurigaku Zasshi pmid:26165340
Domenichiello AF et al. Is docosahexaenoic acid synthesis from α-linolenic acid sufficient to supply the adult brain? 2015 Prog. Lipid Res. pmid:25920364
Kawakami Y et al. Flaxseed oil intake reduces serum small dense low-density lipoprotein concentrations in Japanese men: a randomized, double blind, crossover study. 2015 Nutr J pmid:25896182