DHA

Dha is a lipid of Fatty Acyls (FA) class. Dha is associated with abnormalities such as Atherosclerosis, Consumption-archaic term for TB, Chronic disease, Cardiovascular Diseases and Diabetes Mellitus, Non-Insulin-Dependent. The involved functions are known as Inflammation, Oxidation, fatty acid oxidation, Fatty Acid Metabolism and Lipid Metabolism. Dha often locates in Hepatic, Protoplasm, Mucous Membrane, Epithelium and outer membrane. The associated genes with DHA are IMPACT gene, FATE1 gene, GAPDH gene, THOC4 gene and SLC33A1 gene. The related lipids are stearidonic acid, Fatty Acids, Total cholesterol, Lipopolysaccharides and Dietary Fatty Acid. The related experimental models are Mouse Model, Transgenic Model, Animal Disease Models and Arthritis, Experimental.

Cross Reference

Introduction

To understand associated biological information of DHA, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with DHA?

DHA is suspected in Cardiovascular Diseases, Obesity, Ischemia, Hypertensive disease, Coronary Arteriosclerosis, Cerebrovascular accident and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with DHA

MeSH term MeSH ID Detail
Hemolysis D006461 131 associated lipids
Stomach Ulcer D013276 75 associated lipids
Kidney Failure, Chronic D007676 51 associated lipids
Diabetes Mellitus D003920 90 associated lipids
Hypoxia D000860 23 associated lipids
Arrhythmias, Cardiac D001145 42 associated lipids
Neovascularization, Pathologic D009389 39 associated lipids
Adenocarcinoma D000230 166 associated lipids
Breast Neoplasms D001943 24 associated lipids
Pain D010146 64 associated lipids
Autoimmune Diseases D001327 27 associated lipids
Lupus Erythematosus, Systemic D008180 43 associated lipids
Lung Diseases D008171 37 associated lipids
Lung Neoplasms D008175 171 associated lipids
Pulmonary Fibrosis D011658 24 associated lipids
Burns D002056 34 associated lipids
Pancreatic Neoplasms D010190 77 associated lipids
Inflammation D007249 119 associated lipids
Reperfusion Injury D015427 65 associated lipids
Colitis D003092 69 associated lipids
Per page 10 20 50 100 | Total 240

PubChem Associated disorders and diseases

What pathways are associated with DHA

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with DHA?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with DHA?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with DHA?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with DHA?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with DHA?

Mouse Model

Mouse Model are used in the study 'Homeostatic regulation of photoreceptor cell integrity: significance of the potent mediator neuroprotectin D1 biosynthesized from docosahexaenoic acid: the Proctor Lecture.' (Bazan NG, 2007), Mouse Model are used in the study 'Omega-3 fatty acids EPA and DHA: health benefits throughout life.' (Swanson D et al., 2012), Mouse Model are used in the study 'Docosahexaenoic acid attenuates hepatic inflammation, oxidative stress, and fibrosis without decreasing hepatosteatosis in a Ldlr(-/-) mouse model of western diet-induced nonalcoholic steatohepatitis.' (Depner CM et al., 2013) and Mouse Model are used in the study 'Wax esters from the marine copepod Calanus finmarchicus reduce diet-induced obesity and obesity-related metabolic disorders in mice.' (Höper AC et al., 2014).

Transgenic Model

Transgenic Model are used in the study 'Loss of MAP function leads to hippocampal synapse loss and deficits in the Morris Water Maze with aging.' (Ma QL et al., 2014).

Animal Disease Models

Animal Disease Models are used in the study 'Fish oil increases muscle protein mass and modulates Akt/FOXO, TLR4, and NOD signaling in weanling piglets after lipopolysaccharide challenge.' (Liu Y et al., 2013).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with DHA

Download all related citations
Per page 10 20 50 100 | Total 7336
Authors Title Published Journal PubMed Link
Kelley DS et al. Docosahexaenoic acid supplementation improved lipocentric but not glucocentric markers of insulin sensitivity in hypertriglyceridemic men. 2012 Metab Syndr Relat Disord pmid:21999398
Ortiz-Alvarado O et al. Omega-3 fatty acids eicosapentaenoic acid and docosahexaenoic acid in the management of hypercalciuric stone formers. 2012 Urology pmid:22000931
Nakamoto K et al. Involvement of the long-chain fatty acid receptor GPR40 as a novel pain regulatory system. 2012 Brain Res. pmid:22137657
Ling PR et al. Arachidonic acid and docosahexaenoic acid supplemented to an essential fatty acid-deficient diet alters the response to endotoxin in rats. 2012 Metab. Clin. Exp. pmid:21944266
Ji A et al. n-3 polyunsaturated fatty acids inhibit lipopolysaccharide-induced microglial activation and dopaminergic injury in rats. 2012 Neurotoxicology pmid:22406923
Betancor MB et al. Selenium inclusion decreases oxidative stress indicators and muscle injuries in sea bass larvae fed high-DHA microdiets. 2012 Br. J. Nutr. pmid:22409905
Kornfeld S et al. Reducing endothelial NOS activation and interstitial fluid pressure with n-3 PUFA offset tumor chemoresistance. 2012 Carcinogenesis pmid:22114075
Kim HW et al. Effects of chronic clozapine administration on markers of arachidonic acid cascade and synaptic integrity in rat brain. 2012 Psychopharmacology (Berl.) pmid:22414961
Liang W and Chikritzhs T Does light alcohol consumption during pregnancy improve offspring's cognitive development? 2012 Med. Hypotheses pmid:21985759
Sinn N et al. Effects of n-3 fatty acids, EPA v. DHA, on depressive symptoms, quality of life, memory and executive function in older adults with mild cognitive impairment: a 6-month randomised controlled trial. 2012 Br. J. Nutr. pmid:21929835
Nasiri AH et al. Combined effect of DHA and α-tocopherol supplementation during bull semen cryopreservation on sperm characteristics and fatty acid composition. 2012 Andrologia pmid:21951061
Drover JR et al. A randomized trial of DHA intake during infancy: school readiness and receptive vocabulary at 2-3.5 years of age. 2012 Early Hum. Dev. pmid:22835597
Chew EY et al. The Age-Related Eye Disease Study 2 (AREDS2): study design and baseline characteristics (AREDS2 report number 1). 2012 Ophthalmology pmid:22840421
Vanlint SJ and Ried K Efficacy and tolerability of calcium, vitamin D and a plant-based omega-3 oil for osteopenia: a pilot RCT. 2012 Maturitas pmid:22078660
Clària J et al. Resolvin D1 and resolvin D2 govern local inflammatory tone in obese fat. 2012 J. Immunol. pmid:22844113
Carvalho-Wells AL et al. APOE genotype influences triglyceride and C-reactive protein responses to altered dietary fat intake in UK adults. 2012 Am. J. Clin. Nutr. pmid:23134888
Stanley WC et al. Update on lipids and mitochondrial function: impact of dietary n-3 polyunsaturated fatty acids. 2012 Curr Opin Clin Nutr Metab Care pmid:22248591
Chen J et al. DPA n-3, DPA n-6 and DHA improve lipoprotein profiles and aortic function in hamsters fed a high cholesterol diet. 2012 Atherosclerosis pmid:22284366
Damiano F et al. Citrate carrier promoter is target of peroxisome proliferator-activated receptor alpha and gamma in hepatocytes and adipocytes. 2012 Int. J. Biochem. Cell Biol. pmid:22249025
Shabrani NC et al. Polyunsaturated fatty acids confer cryoresistance on megakaryocytes generated from cord blood and also enhance megakaryocyte production from cryopreserved cord blood cells. 2012 Cytotherapy pmid:22250991
Shearer GC et al. Effects of prescription niacin and omega-3 fatty acids on lipids and vascular function in metabolic syndrome: a randomized controlled trial. 2012 J. Lipid Res. pmid:22892157
Lauritzen L et al. Fish intake, erythrocyte n-3 fatty acid status and metabolic health in Danish adolescent girls and boys. 2012 Br. J. Nutr. pmid:21736784
Isobe Y et al. Identification and structure determination of novel anti-inflammatory mediator resolvin E3, 17,18-dihydroxyeicosapentaenoic acid. 2012 J. Biol. Chem. pmid:22275352
Yetimler B et al. Differential effect of age on the brain fatty acid levels and their correlation with animal cognitive status in mice. 2012 Pharmacol. Biochem. Behav. pmid:22878041
Brown SP et al. Discovery of AM-1638: A Potent and Orally Bioavailable GPR40/FFA1 Full Agonist. 2012 ACS Med Chem Lett pmid:24900539
Mozaffarian D and Wu JH (n-3) fatty acids and cardiovascular health: are effects of EPA and DHA shared or complementary? 2012 J. Nutr. pmid:22279134
Macášek J et al. Plasma fatty acid composition in patients with pancreatic cancer: correlations to clinical parameters. 2012 Nutr Cancer pmid:23061902
Maki KC and Rains TM Stearidonic acid raises red blood cell membrane eicosapentaenoic acid. 2012 J. Nutr. pmid:22279138
Whelan J et al. Effects of dietary stearidonic acid on biomarkers of lipid metabolism. 2012 J. Nutr. pmid:22279143
Wu JH et al. Association of plasma phospholipid long-chain ω-3 fatty acids with incident atrial fibrillation in older adults: the cardiovascular health study. 2012 Circulation pmid:22282329
Pineda-Peña EA et al. Docosahexaenoic acid, an omega-3 polyunsaturated acid protects against indomethacin-induced gastric injury. 2012 Eur. J. Pharmacol. pmid:23063544
Dawson K et al. Modulation of blood cell gene expression by DHA supplementation in hypertriglyceridemic men. 2012 J. Nutr. Biochem. pmid:21775114
Giudetti AM and Cagnazzo R Beneficial effects of n-3 PUFA on chronic airway inflammatory diseases. 2012 Prostaglandins Other Lipid Mediat. pmid:23064030
Vedtofte MS et al. The role of essential fatty acids in the control of coronary heart disease. 2012 Curr Opin Clin Nutr Metab Care pmid:23037902
Molloy C et al. Docosahexaenoic acid and visual functioning in preterm infants: a review. 2012 Neuropsychol Rev pmid:23065239
Kim YJ et al. Plasma phospholipid fatty acid composition in ischemic stroke: importance of docosahexaenoic acid in the risk for intracranial atherosclerotic stenosis. 2012 Atherosclerosis pmid:23044095
Chang YL et al. Docosahexaenoic acid promotes dopaminergic differentiation in induced pluripotent stem cells and inhibits teratoma formation in rats with Parkinson-like pathology. 2012 Cell Transplant pmid:21669041
Tanaka T et al. Oral supplementation with dihomo-γ-linolenic acid (DGLA)-enriched oil increases serum DGLA content in healthy adults. 2012 Lipids pmid:22411689
Ruan D and So SP Screening and identification of dietary oils and unsaturated fatty acids in inhibiting inflammatory prostaglandin E2 signaling in fat stromal cells. 2012 BMC Complement Altern Med pmid:22938033
Lin PY et al. A meta-analytic review of polyunsaturated fatty acid compositions in dementia. 2012 J Clin Psychiatry pmid:22938939
Park Y et al. N-3 polyunsaturated fatty acid consumption produces neurobiological effects associated with prevention of depression in rats after the forced swimming test. 2012 J. Nutr. Biochem. pmid:21852084
Shi T et al. Identification of a novel C22-∆4-producing docosahexaenoic acid (DHA) specific polyunsaturated fatty acid desaturase gene from Isochrysis galbana and its expression in Saccharomyces cerevisiae. 2012 Biotechnol. Lett. pmid:22941368
Finlin BS et al. DHA reduces the atrophy-associated Fn14 protein in differentiated myotubes during coculture with macrophages. 2012 J. Nutr. Biochem. pmid:21852085
D'Vaz N et al. Postnatal fish oil supplementation in high-risk infants to prevent allergy: randomized controlled trial. 2012 Pediatrics pmid:22945403
Francescato G et al. Early retinol-binding protein levels are associated with growth changes in infants born to diabetic mothers. 2012 Pediatr Obes pmid:22991250
Cortie CH and Else PL Dietary docosahexaenoic Acid (22:6) incorporates into cardiolipin at the expense of linoleic Acid (18:2): analysis and potential implications. 2012 Int J Mol Sci pmid:23203135
Sauerwald UC et al. Effect of different levels of docosahexaenoic acid supply on fatty acid status and linoleic and α-linolenic acid conversion in preterm infants. 2012 J. Pediatr. Gastroenterol. Nutr. pmid:22008957
Mitchell DC et al. Quantifying the differential effects of DHA and DPA on the early events in visual signal transduction. 2012 Chem. Phys. Lipids pmid:22405878
Adolph S et al. Unsaturated fatty acids promote the phagocytosis of P. aeruginosa and R. equi by RAW264.7 macrophages. 2012 Curr. Microbiol. pmid:22903555
Dalli J and Serhan CN Specific lipid mediator signatures of human phagocytes: microparticles stimulate macrophage efferocytosis and pro-resolving mediators. 2012 Blood pmid:22904297
Dong PS et al. [Effects of docosahexaenoic acid on ion channels of rat coronary artery smooth muscle cells]. 2012 Zhonghua Xin Xue Guan Bing Za Zhi pmid:22883096
Kuang YL et al. Regulation of the expression of key genes involved in HDL metabolism by unsaturated fatty acids. 2012 Br. J. Nutr. pmid:22221450
Whyte C et al. N-3 long-chain polyunsaturated fatty acids inhibit smooth muscle cell migration by modulating urokinase plasminogen activator receptor through MEK/ERK-dependent and -independent mechanisms. 2012 J. Nutr. Biochem. pmid:22221673
de Velasco PC et al. Nutritional restriction of omega-3 fatty acids alters topographical fine tuning and leads to a delay in the critical period in the rodent visual system. 2012 Exp. Neurol. pmid:22227060
Bonatto SJ et al. Fish oil supplementation improves neutrophil function during cancer chemotherapy. 2012 Lipids pmid:22160495
Yan J et al. Improving stability and activity of cross-linked enzyme aggregates based on polyethylenimine in hydrolysis of fish oil for enrichment of polyunsaturated fatty acids. 2012 Appl. Biochem. Biotechnol. pmid:22167690
de Batlle J et al. Association between Ω3 and Ω6 fatty acid intakes and serum inflammatory markers in COPD. 2012 J. Nutr. Biochem. pmid:21889886
Castro-González MI et al. [Evaluation of ten fish species to be included as part of renal diet, due to their protein, phosphorus and fatty acids content]. 2012 Arch Latinoam Nutr pmid:23610899
Motter AL and Ahern GP TRPA1 is a polyunsaturated fatty acid sensor in mammals. 2012 PLoS ONE pmid:22723860
Ma Y et al. DHA derivatives of fish oil as dietary supplements: a nutrition-based drug discovery approach for therapies to prevent metabolic cardiotoxicity. 2012 Expert Opin Drug Discov pmid:22724444
Harris WS et al. Clinical correlates and heritability of erythrocyte eicosapentaenoic and docosahexaenoic acid content in the Framingham Heart Study. 2012 Atherosclerosis pmid:22727409
Hughes BH et al. Oxidative stability and consumer acceptance of fish oil fortified nutrition bars. 2012 J. Food Sci. pmid:22957916
Nakano M et al. CYP4V2 in Bietti's crystalline dystrophy: ocular localization, metabolism of ω-3-polyunsaturated fatty acids, and functional deficit of the p.H331P variant. 2012 Mol. Pharmacol. pmid:22772592
Park Y et al. Erythrocyte n-3 polyunsaturated fatty acid and seafood intake decrease the risk of depression: case-control study in Korea. 2012 Ann. Nutr. Metab. pmid:22776859
Mraz J et al. Culture of common carp (Cyprinus carpio) with defined flesh quality for prevention of cardiovascular diseases using finishing feeding strategy. 2012 Neuro Endocrinol. Lett. pmid:23183512
Rogerio AP et al. Resolvin D1 and aspirin-triggered resolvin D1 promote resolution of allergic airways responses. 2012 J. Immunol. pmid:22802419
Jones CN et al. Microfluidic chambers for monitoring leukocyte trafficking and humanized nano-proresolving medicines interactions. 2012 Proc. Natl. Acad. Sci. U.S.A. pmid:23185003
Ewaschuk JB et al. Docosahexanoic acid improves chemotherapy efficacy by inducing CD95 translocation to lipid rafts in ER(-) breast cancer cells. 2012 Lipids pmid:23054549
Schott CK and Huang DT ω-3 fatty acids, γ-linolenic acid, and antioxidants: immunomodulators or inert dietary supplements? 2012 Crit Care pmid:23176247
Wang DC et al. Serum fatty acid profiles using GC-MS and multivariate statistical analysis: potential biomarkers of Alzheimer's disease. 2012 Neurobiol. Aging pmid:20980076
Kuipers RS et al. Gestational age dependent changes of the fetal brain, liver and adipose tissue fatty acid compositions in a population with high fish intakes. 2012 Prostaglandins Leukot. Essent. Fatty Acids pmid:22425685
Cunningham E Are krill oil supplements a better source of n-3 fatty acids than fish oil supplements? 2012 J Acad Nutr Diet pmid:22459227
Jeckel KM et al. Docosahexaenoic acid supplementation does not improve Western diet-induced cardiomyopathy in rats. 2012 PLoS ONE pmid:23300587
Rognlien M et al. Consumer perception and sensory effect of oxidation in savory-flavored yogurt enriched with n-3 lipids. 2012 J. Dairy Sci. pmid:22459817
Candelario J et al. PTH1 receptor is involved in mediating cellular response to long-chain polyunsaturated fatty acids. 2012 PLoS ONE pmid:23300710
Pottala JV et al. Red blood cell fatty acids are associated with depression in a case-control study of adolescents. 2012 Prostaglandins Leukot. Essent. Fatty Acids pmid:22464051
Chen YJ et al. Docosahexaenoic acid suppresses the expression of FoxO and its target genes. 2012 J. Nutr. Biochem. pmid:22444500
da Silva Acosta D et al. Fullerene and omega-3 and omega-6 fatty acids on fish brain antioxidant status. 2012 Fish Physiol. Biochem. pmid:22451341
Du Q et al. Dairy fat blends high in α-linolenic acid are superior to n-3 fatty-acid-enriched palm oil blends for increasing DHA levels in the brains of young rats. 2012 J. Nutr. Biochem. pmid:22445803
Krishnamoorthy S et al. Resolvin D1 receptor stereoselectivity and regulation of inflammation and proresolving microRNAs. 2012 Am. J. Pathol. pmid:22449948
Gil-Sánchez A et al. Current understanding of placental fatty acid transport. 2012 Curr Opin Clin Nutr Metab Care pmid:22450774
Smink W et al. Linoleic and α-linolenic acid as precursor and inhibitor for the synthesis of long-chain polyunsaturated fatty acids in liver and brain of growing pigs. 2012 Animal pmid:22436184
Sahin N et al. A novel nutritional supplement containing chromium picolinate, phosphatidylserine, docosahexaenoic acid, and boron activates the antioxidant pathway Nrf2/HO-1 and protects the brain against oxidative stress in high-fat-fed rats. 2012 Nutr Neurosci pmid:23232054
García-Rodríguez CE et al. Plasma inflammatory and vascular homeostasis biomarkers increase during human pregnancy but are not affected by oily fish intake. 2012 J. Nutr. pmid:22623389
Hughes BH et al. Fish oil fortification of soft goat cheese. 2012 J. Food Sci. pmid:22309698
Milte CM et al. Eicosapentaenoic and docosahexaenoic acids, cognition, and behavior in children with attention-deficit/hyperactivity disorder: a randomized controlled trial. 2012 Nutrition pmid:22541055
Dhobale M et al. Association of brain-derived neurotrophic factor and tyrosine kinase B receptor in pregnancy. 2012 Neuroscience pmid:22542551
Sharma S et al. High-fat diet transition reduces brain DHA levels associated with altered brain plasticity and behaviour. 2012 Sci Rep pmid:22666534
Sierra S et al. Administration of docosahexaenoic acid before birth and until aging decreases kainate-induced seizures in adult zebrafish. 2012 Brain Res. Bull. pmid:22542883
Tang X et al. Short term effects of different omega-3 fatty acid formulation on lipid metabolism in mice fed high or low fat diet. 2012 Lipids Health Dis pmid:22676394
Bazan NG et al. Novel aspirin-triggered neuroprotectin D1 attenuates cerebral ischemic injury after experimental stroke. 2012 Exp. Neurol. pmid:22542947
Crawford MA and Broadhurst CL The role of docosahexaenoic and the marine food web as determinants of evolution and hominid brain development: the challenge for human sustainability. 2012 Nutr Health pmid:22544773
Imam MH and Lindor KD Primary sclerosing cholangitis: providing a safe and effective treatment. 2012 Expert Rev Gastroenterol Hepatol pmid:22646247
Vedin I et al. Effects of DHA-rich n-3 fatty acid supplementation on gene expression in blood mononuclear leukocytes: the OmegAD study. 2012 PLoS ONE pmid:22545106
Gronroos NN et al. Fish, fish-derived n-3 fatty acids, and risk of incident atrial fibrillation in the Atherosclerosis Risk in Communities (ARIC) study. 2012 PLoS ONE pmid:22570739
Galicia-Connolly E et al. Complementary, holistic, and integrative medicine: therapies for neurodevelopment in preterm infants. 2012 Pediatr Rev pmid:22659260
Novak EM et al. Low linoleic acid may facilitate Δ6 desaturase activity and docosahexaenoic acid accretion in human fetal development. 2012 Prostaglandins Leukot. Essent. Fatty Acids pmid:22365109
Labrousse VF et al. Short-term long chain omega3 diet protects from neuroinflammatory processes and memory impairment in aged mice. 2012 PLoS ONE pmid:22662127
Chiang N et al. Infection regulates pro-resolving mediators that lower antibiotic requirements. 2012 Nature pmid:22538616
Gil-Campos M and Sanjurjo Crespo P Omega 3 fatty acids and inborn errors of metabolism. 2012 Br. J. Nutr. pmid:22591887