DHA

Dha is a lipid of Fatty Acyls (FA) class. Dha is associated with abnormalities such as Atherosclerosis, Consumption-archaic term for TB, Chronic disease, Cardiovascular Diseases and Diabetes Mellitus, Non-Insulin-Dependent. The involved functions are known as Inflammation, Oxidation, fatty acid oxidation, Fatty Acid Metabolism and Lipid Metabolism. Dha often locates in Hepatic, Protoplasm, Mucous Membrane, Epithelium and outer membrane. The associated genes with DHA are IMPACT gene, FATE1 gene, GAPDH gene, THOC4 gene and SLC33A1 gene. The related lipids are stearidonic acid, Fatty Acids, Total cholesterol, Lipopolysaccharides and Dietary Fatty Acid. The related experimental models are Mouse Model, Transgenic Model, Animal Disease Models and Arthritis, Experimental.

Cross Reference

Introduction

To understand associated biological information of DHA, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with DHA?

DHA is suspected in Cardiovascular Diseases, Obesity, Ischemia, Hypertensive disease, Coronary Arteriosclerosis, Cerebrovascular accident and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with DHA

MeSH term MeSH ID Detail
Lordosis D008141 1 associated lipids
Phenylketonuria, Maternal D017042 1 associated lipids
Refsum Disease, Infantile D052919 1 associated lipids
Pulmonary Valve Stenosis D011666 1 associated lipids
Cerebrovascular Trauma D020214 1 associated lipids
Histiocytoma, Malignant Fibrous D051677 1 associated lipids
Communication Disorders D003147 1 associated lipids
Hydroa Vacciniforme D006837 1 associated lipids
Geographic Atrophy D057092 1 associated lipids
Trophoblastic Tumor, Placental Site D018245 1 associated lipids
Dysbiosis D064806 2 associated lipids
Dementia D003704 2 associated lipids
Paracoccidioidomycosis D010229 2 associated lipids
Intracranial Hemorrhages D020300 2 associated lipids
Decapitation D049248 2 associated lipids
Leukemia, Prolymphocytic D015463 2 associated lipids
Dyskinesias D020820 3 associated lipids
Myocarditis D009205 3 associated lipids
Glaucoma, Open-Angle D005902 3 associated lipids
Neuroaxonal Dystrophies D019150 3 associated lipids
Myoglobinuria D009212 3 associated lipids
Dyslexia D004410 3 associated lipids
Albinism D000417 3 associated lipids
Short Bowel Syndrome D012778 3 associated lipids
Depression, Postpartum D019052 3 associated lipids
Chondrodysplasia Punctata, Rhizomelic D018902 4 associated lipids
Biliary Atresia D001656 4 associated lipids
Milk Hypersensitivity D016269 4 associated lipids
Spinocerebellar Ataxias D020754 4 associated lipids
Diabetes Complications D048909 4 associated lipids
Hypercalciuria D053565 4 associated lipids
Intracranial Arteriosclerosis D002537 4 associated lipids
Peroxisomal Disorders D018901 5 associated lipids
Macular Degeneration D008268 5 associated lipids
Chronic Pain D059350 5 associated lipids
Vibrio Infections D014735 5 associated lipids
Abortion, Habitual D000026 5 associated lipids
Keratitis, Herpetic D016849 5 associated lipids
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma D054218 5 associated lipids
Hyperlipoproteinemia Type IV D006953 6 associated lipids
Premature Birth D047928 6 associated lipids
Malnutrition D044342 6 associated lipids
Optic Nerve Diseases D009901 6 associated lipids
Peripheral Nerve Injuries D059348 6 associated lipids
Nutrition Disorders D009748 6 associated lipids
Intermittent Claudication D007383 6 associated lipids
Retinitis Pigmentosa D012174 6 associated lipids
Hepatitis C D006526 7 associated lipids
Keratitis D007634 7 associated lipids
Dyslipidemias D050171 7 associated lipids
Per page 10 20 50 100 | Total 240

PubChem Associated disorders and diseases

What pathways are associated with DHA

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with DHA?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with DHA?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with DHA?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with DHA?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with DHA?

Mouse Model

Mouse Model are used in the study 'Homeostatic regulation of photoreceptor cell integrity: significance of the potent mediator neuroprotectin D1 biosynthesized from docosahexaenoic acid: the Proctor Lecture.' (Bazan NG, 2007), Mouse Model are used in the study 'Omega-3 fatty acids EPA and DHA: health benefits throughout life.' (Swanson D et al., 2012), Mouse Model are used in the study 'Docosahexaenoic acid attenuates hepatic inflammation, oxidative stress, and fibrosis without decreasing hepatosteatosis in a Ldlr(-/-) mouse model of western diet-induced nonalcoholic steatohepatitis.' (Depner CM et al., 2013) and Mouse Model are used in the study 'Wax esters from the marine copepod Calanus finmarchicus reduce diet-induced obesity and obesity-related metabolic disorders in mice.' (Höper AC et al., 2014).

Transgenic Model

Transgenic Model are used in the study 'Loss of MAP function leads to hippocampal synapse loss and deficits in the Morris Water Maze with aging.' (Ma QL et al., 2014).

Animal Disease Models

Animal Disease Models are used in the study 'Fish oil increases muscle protein mass and modulates Akt/FOXO, TLR4, and NOD signaling in weanling piglets after lipopolysaccharide challenge.' (Liu Y et al., 2013).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with DHA

Download all related citations
Per page 10 20 50 100 | Total 7336
Authors Title Published Journal PubMed Link
Fleming JA and Kris-Etherton PM The evidence for α-linolenic acid and cardiovascular disease benefits: Comparisons with eicosapentaenoic acid and docosahexaenoic acid. 2014 Adv Nutr pmid:25398754
Gilbert K et al. Resolvin D1, a metabolite of omega-3 polyunsaturated fatty acid, decreases post-myocardial infarct depression. 2014 Mar Drugs pmid:25402828
Bremer AA et al. Fish oil supplementation ameliorates fructose-induced hypertriglyceridemia and insulin resistance in adult male rhesus macaques. 2014 J. Nutr. pmid:24108131
Papanikolaou Y et al. U.S. adults are not meeting recommended levels for fish and omega-3 fatty acid intake: results of an analysis using observational data from NHANES 2003-2008. 2014 Nutr J pmid:24694001
Heemskerk MM et al. Prolonged niacin treatment leads to increased adipose tissue PUFA synthesis and anti-inflammatory lipid and oxylipin plasma profile. 2014 J. Lipid Res. pmid:25320342
Hong SH et al. Docosahexaenoic acid confers enduring neuroprotection in experimental stroke. 2014 J. Neurol. Sci. pmid:24433927
Mulder KA et al. Omega-3 fatty acid deficiency in infants before birth identified using a randomized trial of maternal DHA supplementation in pregnancy. 2014 PLoS ONE pmid:24427279
Domenichiello AF et al. Whole body synthesis rates of DHA from α-linolenic acid are greater than brain DHA accretion and uptake rates in adult rats. 2014 J. Lipid Res. pmid:24212299
Sokolov EI et al. [Value of Fatty acids in formation of thrombotic status in patients with ischemic heart disease]. 2014 Kardiologiia pmid:25177882
Dai XW et al. Erythrocyte membrane n-3 fatty acid levels and carotid atherosclerosis in Chinese men and women. 2014 Atherosclerosis pmid:24401220
Aursnes M et al. Total synthesis of the lipid mediator PD1n-3 DPA: configurational assignments and anti-inflammatory and pro-resolving actions. 2014 J. Nat. Prod. pmid:24576195
Brasky TM et al. Associations of long-chain ω-3 fatty acids and fish intake with endometrial cancer risk in the VITamins And Lifestyle cohort. 2014 Am. J. Clin. Nutr. pmid:24500149
Nobili V et al. Role of docosahexaenoic acid treatment in improving liver histology in pediatric nonalcoholic fatty liver disease. 2014 PLoS ONE pmid:24505350
Liu Y et al. The fish oil ingredient, docosahexaenoic acid, activates cytosolic phospholipase Aâ‚‚ via GPR120 receptor to produce prostaglandin Eâ‚‚ and plays an anti-inflammatory role in macrophages. 2014 Immunology pmid:24673159
Røsjø E et al. Increasing serum levels of vitamin A, D and E are associated with alterations of different inflammation markers in patients with multiple sclerosis. 2014 J. Neuroimmunol. pmid:24713402
Kim W et al. Dietary fish oil and DHA down-regulate antigen-activated CD4+ T-cells while promoting the formation of liquid-ordered mesodomains. 2014 Br. J. Nutr. pmid:23962659
Liu M et al. Protectin DX, a double lipoxygenase product of DHA, inhibits both ROS production in human neutrophils and cyclooxygenase activities. 2014 Lipids pmid:24254970
Hutchins-Wiese HL et al. High-dose eicosapentaenoic acid and docosahexaenoic acid supplementation reduces bone resorption in postmenopausal breast cancer survivors on aromatase inhibitors: a pilot study. 2014 Nutr Cancer pmid:24274259
Chang D et al. Serum free fatty acids level in senile cataract. 2014 J Am Coll Nutr pmid:25079310
Purcell R et al. High-fat meals rich in EPA plus DHA compared with DHA only have differential effects on postprandial lipemia and plasma 8-isoprostane F2α concentrations relative to a control high-oleic acid meal: a randomized controlled trial. 2014 Am. J. Clin. Nutr. pmid:25099540