DHA

Dha is a lipid of Fatty Acyls (FA) class. Dha is associated with abnormalities such as Atherosclerosis, Consumption-archaic term for TB, Chronic disease, Cardiovascular Diseases and Diabetes Mellitus, Non-Insulin-Dependent. The involved functions are known as Inflammation, Oxidation, fatty acid oxidation, Fatty Acid Metabolism and Lipid Metabolism. Dha often locates in Hepatic, Protoplasm, Mucous Membrane, Epithelium and outer membrane. The associated genes with DHA are IMPACT gene, FATE1 gene, GAPDH gene, THOC4 gene and SLC33A1 gene. The related lipids are stearidonic acid, Fatty Acids, Total cholesterol, Lipopolysaccharides and Dietary Fatty Acid. The related experimental models are Mouse Model, Transgenic Model, Animal Disease Models and Arthritis, Experimental.

Cross Reference

Introduction

To understand associated biological information of DHA, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with DHA?

DHA is suspected in Cardiovascular Diseases, Obesity, Ischemia, Hypertensive disease, Coronary Arteriosclerosis, Cerebrovascular accident and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with DHA

MeSH term MeSH ID Detail
Chondrodysplasia Punctata, Rhizomelic D018902 4 associated lipids
Depression, Postpartum D019052 3 associated lipids
Burkholderia Infections D019121 7 associated lipids
Neuroaxonal Dystrophies D019150 3 associated lipids
Neurodegenerative Diseases D019636 32 associated lipids
Genetic Predisposition to Disease D020022 24 associated lipids
Sleep Apnea, Obstructive D020181 9 associated lipids
Cerebrovascular Trauma D020214 1 associated lipids
Infarction, Middle Cerebral Artery D020244 35 associated lipids
Neurotoxicity Syndromes D020258 34 associated lipids
Intracranial Hemorrhages D020300 2 associated lipids
Muscular Dystrophy, Duchenne D020388 11 associated lipids
Brain Infarction D020520 17 associated lipids
Stroke D020521 32 associated lipids
Multiple Sclerosis, Relapsing-Remitting D020529 7 associated lipids
Parkinsonian Disorders D020734 20 associated lipids
Spinocerebellar Ataxias D020754 4 associated lipids
Dyskinesias D020820 3 associated lipids
Hypoxia-Ischemia, Brain D020925 22 associated lipids
Metabolic Syndrome D024821 44 associated lipids
Per page 10 20 50 100 | Total 240

PubChem Associated disorders and diseases

What pathways are associated with DHA

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with DHA?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with DHA?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with DHA?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with DHA?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with DHA?

Mouse Model

Mouse Model are used in the study 'Homeostatic regulation of photoreceptor cell integrity: significance of the potent mediator neuroprotectin D1 biosynthesized from docosahexaenoic acid: the Proctor Lecture.' (Bazan NG, 2007), Mouse Model are used in the study 'Omega-3 fatty acids EPA and DHA: health benefits throughout life.' (Swanson D et al., 2012), Mouse Model are used in the study 'Docosahexaenoic acid attenuates hepatic inflammation, oxidative stress, and fibrosis without decreasing hepatosteatosis in a Ldlr(-/-) mouse model of western diet-induced nonalcoholic steatohepatitis.' (Depner CM et al., 2013) and Mouse Model are used in the study 'Wax esters from the marine copepod Calanus finmarchicus reduce diet-induced obesity and obesity-related metabolic disorders in mice.' (Höper AC et al., 2014).

Transgenic Model

Transgenic Model are used in the study 'Loss of MAP function leads to hippocampal synapse loss and deficits in the Morris Water Maze with aging.' (Ma QL et al., 2014).

Animal Disease Models

Animal Disease Models are used in the study 'Fish oil increases muscle protein mass and modulates Akt/FOXO, TLR4, and NOD signaling in weanling piglets after lipopolysaccharide challenge.' (Liu Y et al., 2013).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with DHA

Download all related citations
Per page 10 20 50 100 | Total 7336
Authors Title Published Journal PubMed Link
Midtbø LK et al. Intake of farmed Atlantic salmon fed soybean oil increases hepatic levels of arachidonic acid-derived oxylipins and ceramides in mice. 2015 J. Nutr. Biochem. pmid:25776459
Lehmann C et al. Lipoxin and resolvin biosynthesis is dependent on 5-lipoxygenase activating protein. 2015 FASEB J. pmid:26289316
Taylan A et al. S1000A12, Chitotriosidase, and Resolvin D1 as Potential Biomarkers of Familial Mediterranean Fever. 2015 J. Korean Med. Sci. pmid:26339162
Croasdell A et al. Resolvins attenuate inflammation and promote resolution in cigarette smoke-exposed human macrophages. 2015 Am. J. Physiol. Lung Cell Mol. Physiol. pmid:26301452
Qin Y et al. Fish Oil Supplements Lower Serum Lipids and Glucose in Correlation with a Reduction in Plasma Fibroblast Growth Factor 21 and Prostaglandin E2 in Nonalcoholic Fatty Liver Disease Associated with Hyperlipidemia: A Randomized Clinical Trial. 2015 PLoS ONE pmid:26226139
Orr SK et al. Proresolving actions of a new resolvin D1 analog mimetic qualifies as an immunoresolvent. 2015 Am. J. Physiol. Lung Cell Mol. Physiol. pmid:25770181
Rossi S et al. Protection from endotoxic uveitis by intravitreal Resolvin D1: involvement of lymphocytes, miRNAs, ubiquitin-proteasome, and M1/M2 macrophages. 2015 Mediators Inflamm. pmid:25684860
Lastrucci C et al. Molecular and cellular profiles of the resolution phase in a damage-associated molecular pattern (DAMP)-mediated peritonitis model and revelation of leukocyte persistence in peritoneal tissues. 2015 FASEB J. pmid:25609430
Pierdomenico AM et al. MicroRNA-181b regulates ALX/FPR2 receptor expression and proresolution signaling in human macrophages. 2015 J. Biol. Chem. pmid:25505240
Akagi D et al. Systemic delivery of proresolving lipid mediators resolvin D2 and maresin 1 attenuates intimal hyperplasia in mice. 2015 FASEB J. pmid:25777995
Calandria JM et al. The Docosanoid Neuroprotectin D1 Induces TH-Positive Neuronal Survival in a Cellular Model of Parkinson's Disease. 2015 Cell. Mol. Neurobiol. pmid:26047923
Dorninger F et al. Homeostasis of phospholipids - The level of phosphatidylethanolamine tightly adapts to changes in ethanolamine plasmalogens. 2015 Biochim. Biophys. Acta pmid:25463479
Suo R et al. Generation of Tetracosahexaenoic Acid in Benthic Marine Organisms. 2015 J Oleo Sci pmid:26136172
Barden AE et al. Specialized proresolving lipid mediators in humans with the metabolic syndrome after n-3 fatty acids and aspirin. 2015 Am. J. Clin. Nutr. pmid:26561623
Park CK Maresin 1 Inhibits TRPV1 in Temporomandibular Joint-Related Trigeminal Nociceptive Neurons and TMJ Inflammation-Induced Synaptic Plasticity in the Trigeminal Nucleus. 2015 Mediators Inflamm. pmid:26617436
Kotani K et al. Enzymatic preparation of human milk fat substitutes and their oxidation stability. 2015 J Oleo Sci pmid:25757431
Fischer T [Pharmacological therapy of age-related macular degeneration based on etiopathogenesis]. 2015 Orv Hetil pmid:26548469
Amminger GP et al. Predictors of treatment response in young people at ultra-high risk for psychosis who received long-chain omega-3 fatty acids. 2015 Transl Psychiatry pmid:25585167
Nury T et al. Induction of oxiapoptophagy on 158N murine oligodendrocytes treated by 7-ketocholesterol-, 7β-hydroxycholesterol-, or 24(S)-hydroxycholesterol: Protective effects of α-tocopherol and docosahexaenoic acid (DHA; C22:6 n-3). 2015 Steroids pmid:25683890
Norris SE et al. Human prefrontal cortex phospholipids containing docosahexaenoic acid increase during normal adult aging, whereas those containing arachidonic acid decrease. 2015 Neurobiol. Aging pmid:25676385
Filipcikova R et al. Lycopene improves the distorted ratio between AA/DHA in the seminal plasma of infertile males and increases the likelihood of successful pregnancy. 2015 Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub pmid:23446211
Li R et al. Enzymatic Synthesis of Refined Olive Oil-Based Structured Lipid Containing Omega -3 and -6 Fatty Acids for Potential Application in Infant Formula. 2015 J. Food Sci. pmid:26408984
Wendell SG et al. 15-Hydroxyprostaglandin dehydrogenase generation of electrophilic lipid signaling mediators from hydroxy ω-3 fatty acids. 2015 J. Biol. Chem. pmid:25586183
Linhartova P and Sampels S Combined incubation of cadmium, docosahexaenoic and eicosapentaenoic acid results in increased uptake of cadmium and elevated docosapentaenoic acid content in hepatocytes in vitro. 2015 Lipids Health Dis pmid:26627047
Park HG et al. The fatty acid desaturase 2 (FADS2) gene product catalyzes Δ4 desaturation to yield n-3 docosahexaenoic acid and n-6 docosapentaenoic acid in human cells. 2015 FASEB J. pmid:26065859
Lim JY et al. Biological Roles of Resolvins and Related Substances in the Resolution of Pain. 2015 Biomed Res Int pmid:26339646
Schwager J et al. ω-3 PUFAs and Resveratrol Differently Modulate Acute and Chronic Inflammatory Processes. 2015 Biomed Res Int pmid:26301248
Harrison JL et al. Resolvins AT-D1 and E1 differentially impact functional outcome, post-traumatic sleep, and microglial activation following diffuse brain injury in the mouse. 2015 Brain Behav. Immun. pmid:25585137
Katakura M et al. Chronic Arachidonic Acid Administration Decreases Docosahexaenoic Acid- and Eicosapentaenoic Acid-Derived Metabolites in Kidneys of Aged Rats. 2015 PLoS ONE pmid:26485038
Ross AB et al. Herring and Beef Meals Lead to Differences in Plasma 2-Aminoadipic Acid, β-Alanine, 4-Hydroxyproline, Cetoleic Acid, and Docosahexaenoic Acid Concentrations in Overweight Men. 2015 J. Nutr. pmid:26400963
Zgorzynska E et al. Docosahexaenoic acid attenuates oxidative stress and protects human gingival fibroblasts against cytotoxicity induced by hydrogen peroxide and butyric acid. 2015 Arch. Oral Biol. pmid:25455128
Cotogni P et al. The Omega-3 Fatty Acid Docosahexaenoic Acid Modulates Inflammatory Mediator Release in Human Alveolar Cells Exposed to Bronchoalveolar Lavage Fluid of ARDS Patients. 2015 Biomed Res Int pmid:26301250
Dodington DW et al. Higher Intakes of Fruits and Vegetables, β-Carotene, Vitamin C, α-Tocopherol, EPA, and DHA Are Positively Associated with Periodontal Healing after Nonsurgical Periodontal Therapy in Nonsmokers but Not in Smokers. 2015 J. Nutr. pmid:26423734
Bobiński R and Mikulska M The ins and outs of maternal-fetal fatty acid metabolism. 2015 Acta Biochim. Pol. pmid:26345097
Esmaeili V et al. Dietary fatty acids affect semen quality: a review. 2015 Andrology pmid:25951427
Kawakami Y et al. Flaxseed oil intake reduces serum small dense low-density lipoprotein concentrations in Japanese men: a randomized, double blind, crossover study. 2015 Nutr J pmid:25896182
Mohajeri S and Newman SA Review of evidence for dietary influences on atopic dermatitis. 2014 Jul-Aug Skin Therapy Lett. pmid:25188523
Akimov MG et al. [The influence of docosahexaenoic acid moiety on cytotoxic activity of 1,2,4-thiadiazole derivatives]. 2014 Jul-Aug Biomed Khim pmid:25249531
Kar S Omacor and omega-3 fatty acids for treatment of coronary artery disease and the pleiotropic effects. 2014 Jan-Feb Am J Ther pmid:21975796
Casanova E et al. Omega-3 polyunsaturated fatty acids and proanthocyanidins improve postprandial metabolic flexibility in rat. 2014 Jan-Feb Biofactors pmid:23983179
Harris WS and Schmitt TL Unexpected similarity in RBC DHA and AA levels between bottlenose dolphins and humans. 2014 Feb-Mar Prostaglandins Leukot. Essent. Fatty Acids pmid:24393427
Keelan JA Letter to the editor: "fatty acids and placental transport: insight or in vitro artifact?". 2014 Am. J. Physiol., Cell Physiol. pmid:25452382
Torok VA et al. Influence of dietary docosahexaenoic acid supplementation on the overall rumen microbiota of dairy cows and linkages with production parameters. 2014 Can. J. Microbiol. pmid:24779577
Burns-Whitmore B et al. Effects of supplementing n-3 fatty acid enriched eggs and walnuts on cardiovascular disease risk markers in healthy free-living lacto-ovo-vegetarians: a randomized, crossover, free-living intervention study. 2014 Nutr J pmid:24673793
Hughbanks-Wheaton DK et al. Safety assessment of docosahexaenoic acid in X-linked retinitis pigmentosa: the 4-year DHAX trial. 2014 Invest. Ophthalmol. Vis. Sci. pmid:25015354
Sato K et al. Pharmacological evidence showing significant roles for potassium channels and CYP epoxygenase metabolites in the relaxant effects of docosahexaenoic acid on the rat aorta contracted with U46619. 2014 Biol. Pharm. Bull. pmid:24369179
Taltavull N et al. Eicosapentaenoic acid/docosahexaenoic acid 1:1 ratio improves histological alterations in obese rats with metabolic syndrome. 2014 Lipids Health Dis pmid:24512213
Dayaker G et al. Total synthesis of neuroprotectin D1 analogues derived from omega-6 docosapentaenoic acid (DPA) and adrenic acid (AdA) from a common pivotal, late-stage intermediate. 2014 J. Org. Chem. pmid:24571431
Sertoglu E et al. Comparison of plasma and erythrocyte membrane fatty acid compositions in patients with end-stage renal disease and type 2 diabetes mellitus. 2014 Chem. Phys. Lipids pmid:24384240
Luxwolda MF et al. Interrelationships between maternal DHA in erythrocytes, milk and adipose tissue. Is 1 wt% DHA the optimal human milk content? Data from four Tanzanian tribes differing in lifetime stable intakes of fish. 2014 Br. J. Nutr. pmid:24175990