DHA

Dha is a lipid of Fatty Acyls (FA) class. Dha is associated with abnormalities such as Atherosclerosis, Consumption-archaic term for TB, Chronic disease, Cardiovascular Diseases and Diabetes Mellitus, Non-Insulin-Dependent. The involved functions are known as Inflammation, Oxidation, fatty acid oxidation, Fatty Acid Metabolism and Lipid Metabolism. Dha often locates in Hepatic, Protoplasm, Mucous Membrane, Epithelium and outer membrane. The associated genes with DHA are IMPACT gene, FATE1 gene, GAPDH gene, THOC4 gene and SLC33A1 gene. The related lipids are stearidonic acid, Fatty Acids, Total cholesterol, Lipopolysaccharides and Dietary Fatty Acid. The related experimental models are Mouse Model, Transgenic Model, Animal Disease Models and Arthritis, Experimental.

Cross Reference

Introduction

To understand associated biological information of DHA, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with DHA?

DHA is suspected in Cardiovascular Diseases, Obesity, Ischemia, Hypertensive disease, Coronary Arteriosclerosis, Cerebrovascular accident and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with DHA

MeSH term MeSH ID Detail
Plaque, Amyloid D058225 19 associated lipids
Eye Abnormalities D005124 7 associated lipids
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma D054218 5 associated lipids
Chondrodysplasia Punctata, Rhizomelic D018902 4 associated lipids
Chronic Pain D059350 5 associated lipids
Neuroaxonal Dystrophies D019150 3 associated lipids
Spinocerebellar Ataxias D020754 4 associated lipids
Paracoccidioidomycosis D010229 2 associated lipids
Leukemia, Prolymphocytic D015463 2 associated lipids
Hydroa Vacciniforme D006837 1 associated lipids
Trophoblastic Tumor, Placental Site D018245 1 associated lipids
Phenylketonuria, Maternal D017042 1 associated lipids
Refsum Disease, Infantile D052919 1 associated lipids
Pulmonary Valve Stenosis D011666 1 associated lipids
Cerebrovascular Trauma D020214 1 associated lipids
Histiocytoma, Malignant Fibrous D051677 1 associated lipids
Decapitation D049248 2 associated lipids
Communication Disorders D003147 1 associated lipids
Geographic Atrophy D057092 1 associated lipids
Lordosis D008141 1 associated lipids
Per page 10 20 50 100 | Total 240

PubChem Associated disorders and diseases

What pathways are associated with DHA

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with DHA?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with DHA?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with DHA?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with DHA?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with DHA?

Mouse Model

Mouse Model are used in the study 'Homeostatic regulation of photoreceptor cell integrity: significance of the potent mediator neuroprotectin D1 biosynthesized from docosahexaenoic acid: the Proctor Lecture.' (Bazan NG, 2007), Mouse Model are used in the study 'Omega-3 fatty acids EPA and DHA: health benefits throughout life.' (Swanson D et al., 2012), Mouse Model are used in the study 'Docosahexaenoic acid attenuates hepatic inflammation, oxidative stress, and fibrosis without decreasing hepatosteatosis in a Ldlr(-/-) mouse model of western diet-induced nonalcoholic steatohepatitis.' (Depner CM et al., 2013) and Mouse Model are used in the study 'Wax esters from the marine copepod Calanus finmarchicus reduce diet-induced obesity and obesity-related metabolic disorders in mice.' (Höper AC et al., 2014).

Transgenic Model

Transgenic Model are used in the study 'Loss of MAP function leads to hippocampal synapse loss and deficits in the Morris Water Maze with aging.' (Ma QL et al., 2014).

Animal Disease Models

Animal Disease Models are used in the study 'Fish oil increases muscle protein mass and modulates Akt/FOXO, TLR4, and NOD signaling in weanling piglets after lipopolysaccharide challenge.' (Liu Y et al., 2013).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with DHA

Download all related citations
Per page 10 20 50 100 | Total 7336
Authors Title Published Journal PubMed Link
Xie W et al. ResolvinD1 reduces apoptosis and inflammation in primary human alveolar epithelial type 2 cells. 2016 Lab. Invest. pmid:26878131
Kim N et al. Specialized proresolving mediators (SPMs) inhibit human B-cell IgE production. 2016 Eur. J. Immunol. pmid:26474728
Croasdell A et al. Resolvin D2 decreases TLR4 expression to mediate resolution in human monocytes. 2016 FASEB J. pmid:27256622
Jory J Abnormal fatty acids in Canadian children with autism. 2016 Nutrition pmid:26746679
Li R et al. Maresin 1 Mitigates Inflammatory Response and Protects Mice from Sepsis. 2016 Mediators Inflamm. pmid:28042205
Hanssens L et al. The clinical benefits of long-term supplementation with omega-3 fatty acids in cystic fibrosis patients - A pilot study. 2016 Prostaglandins Leukot. Essent. Fatty Acids pmid:27154364
Wang H et al. Potential serum biomarkers from a metabolomics study of autism. 2016 J Psychiatry Neurosci pmid:26395811
Deng X et al. iPLA2β deficiency attenuates obesity and hepatic steatosis in ob/ob mice through hepatic fatty-acyl phospholipid remodeling. 2016 Biochim. Biophys. Acta pmid:26873633
Tian Y et al. Bioconversion of Docosapentaenoic Acid in Human Cell Lines, Caco-2, HepG2, and THP-1. 2016 J Oleo Sci pmid:27829615
Wilding TJ et al. Chimeric Glutamate Receptor Subunits Reveal the Transmembrane Domain Is Sufficient for NMDA Receptor Pore Properties but Some Positive Allosteric Modulators Require Additional Domains. 2016 J. Neurosci. pmid:27559165
Gao J et al. Maternal DHA supplementation protects rat offspring against impairment of learning and memory following prenatal exposure to valproic acid. 2016 J. Nutr. Biochem. pmid:27469996
Snodgrass RG et al. Docosahexaenoic acid and palmitic acid reciprocally modulate monocyte activation in part through endoplasmic reticulum stress. 2016 J. Nutr. Biochem. pmid:27142735
Yoshida S et al. Treatment with DHA/EPA ameliorates atopic dermatitis-like skin disease by blocking LTB4 production. 2016 J. Med. Invest. pmid:27644556
Goda AA et al. Astaxanthin and Docosahexaenoic Acid Reverse the Toxicity of the Maxi-K (BK) Channel Antagonist Mycotoxin Penitrem A. 2016 Mar Drugs pmid:27834847
Cerf ME and Herrera E High Fat Diet Administration during Specific Periods of Pregnancy Alters Maternal Fatty Acid Profiles in the Near-Term Rat. 2016 Nutrients pmid:26742067
Benabdoune H et al. The role of resolvin D1 in the regulation of inflammatory and catabolic mediators in osteoarthritis. 2016 Inflamm. Res. pmid:27056390
Medema S et al. Levels of Red Blood Cell Fatty Acids in Patients With Psychosis, Their Unaffected Siblings, and Healthy Controls. 2016 Schizophr Bull pmid:26385764
Abeywardena MY et al. Rise in DPA Following SDA-Rich Dietary Echium Oil Less Effective in Affording Anti-Arrhythmic Actions Compared to High DHA Levels Achieved with Fish Oil in Sprague-Dawley Rats. 2016 Nutrients pmid:26742064
Sui YH et al. Dietary saturated fatty acid and polyunsaturated fatty acid oppositely affect hepatic NOD-like receptor protein 3 inflammasome through regulating nuclear factor-kappa B activation. 2016 World J. Gastroenterol. pmid:26937141
Kjær MA et al. Regulation of the Omega-3 Fatty Acid Biosynthetic Pathway in Atlantic Salmon Hepatocytes. 2016 PLoS ONE pmid:27973547
Kondreddy VK and Kamatham AN Celecoxib, a COX-2 inhibitor, synergistically potentiates the anti-inflammatory activity of docosahexaenoic acid in macrophage cell line. 2016 Immunopharmacol Immunotoxicol pmid:26954392
Devassy JG et al. Omega-3 Polyunsaturated Fatty Acids and Oxylipins in Neuroinflammation and Management of Alzheimer Disease. 2016 Adv Nutr pmid:27633106
Nuez-Ortín WG et al. Preliminary Validation of a High Docosahexaenoic Acid (DHA) and -Linolenic Acid (ALA) Dietary Oil Blend: Tissue Fatty Acid Composition and Liver Proteome Response in Atlantic Salmon (Salmo salar) Smolts. 2016 PLoS ONE pmid:27556399
Del Gobbo LC et al. ω-3 Polyunsaturated Fatty Acid Biomarkers and Coronary Heart Disease: Pooling Project of 19 Cohort Studies. 2016 JAMA Intern Med pmid:27357102
Metherel AH et al. Whole-body DHA synthesis-secretion kinetics from plasma eicosapentaenoic acid and alpha-linolenic acid in the free-living rat. 2016 Biochim. Biophys. Acta pmid:27263420
Khaddaj-Mallat R et al. Pro-Resolving Effects of Resolvin D2 in LTD4 and TNF-α Pre-Treated Human Bronchi. 2016 PLoS ONE pmid:27935998
Minihane AM Impact of Genotype on EPA and DHA Status and Responsiveness to Increased Intakes. 2016 Nutrients pmid:26950146
Taha AY et al. Threshold changes in rat brain docosahexaenoic acid incorporation and concentration following graded reductions in dietary alpha-linolenic acid. 2016 Prostaglandins Leukot. Essent. Fatty Acids pmid:26869088
Titos E et al. Signaling and Immunoresolving Actions of Resolvin D1 in Inflamed Human Visceral Adipose Tissue. 2016 J. Immunol. pmid:27647830
Wang CS et al. ALX/FPR2 Modulates Anti-Inflammatory Responses in Mouse Submandibular Gland. 2016 Sci Rep pmid:27064029
Zhao Q et al. Resolvin D1 Alleviates the Lung Ischemia Reperfusion Injury via Complement, Immunoglobulin, TLR4, and Inflammatory Factors in Rats. 2016 Inflammation pmid:27145782
Midtbø LK et al. Intake of farmed Atlantic salmon fed soybean oil increases hepatic levels of arachidonic acid-derived oxylipins and ceramides in mice. 2015 J. Nutr. Biochem. pmid:25776459
Prieto P et al. Activation of autophagy in macrophages by pro-resolving lipid mediators. 2015 Autophagy pmid:26506892
Wu A et al. Curcumin boosts DHA in the brain: Implications for the prevention of anxiety disorders. 2015 Biochim. Biophys. Acta pmid:25550171
Maekawa T et al. Antagonistic effects of IL-17 and D-resolvins on endothelial Del-1 expression through a GSK-3β-C/EBPβ pathway. 2015 Nat Commun pmid:26374165
Taylan A et al. S1000A12, Chitotriosidase, and Resolvin D1 as Potential Biomarkers of Familial Mediterranean Fever. 2015 J. Korean Med. Sci. pmid:26339162
Cox R et al. Resolvins Decrease Oxidative Stress Mediated Macrophage and Epithelial Cell Interaction through Decreased Cytokine Secretion. 2015 PLoS ONE pmid:26317859
Herrera BS et al. LXA4 actions direct fibroblast function and wound closure. 2015 Biochem. Biophys. Res. Commun. pmid:26188508
Croasdell A et al. Resolvins attenuate inflammation and promote resolution in cigarette smoke-exposed human macrophages. 2015 Am. J. Physiol. Lung Cell Mol. Physiol. pmid:26301452
Rossi S et al. Interplay between Intravitreal RvD1 and Local Endogenous Sirtuin-1 in the Protection from Endotoxin-Induced Uveitis in Rats. 2015 Mediators Inflamm. pmid:26180376
de Oliveira JR et al. AT-RvD1 modulates CCL-2 and CXCL-8 production and NF-κB, STAT-6, SOCS1, and SOCS3 expression on bronchial epithelial cells stimulated with IL-4. 2015 Biomed Res Int pmid:26075216
Shevalye H et al. Effect of enriching the diet with menhaden oil or daily treatment with resolvin D1 on neuropathy in a mouse model of type 2 diabetes. 2015 J. Neurophysiol. pmid:25925322
Kain V et al. Resolvin D1 activates the inflammation resolving response at splenic and ventricular site following myocardial infarction leading to improved ventricular function. 2015 J. Mol. Cell. Cardiol. pmid:25870158
Fiala M et al. ω-3 Supplementation increases amyloid-β phagocytosis and resolvin D1 in patients with minor cognitive impairment. 2015 FASEB J. pmid:25805829
Qin Y et al. Fish Oil Supplements Lower Serum Lipids and Glucose in Correlation with a Reduction in Plasma Fibroblast Growth Factor 21 and Prostaglandin E2 in Nonalcoholic Fatty Liver Disease Associated with Hyperlipidemia: A Randomized Clinical Trial. 2015 PLoS ONE pmid:26226139
Orr SK et al. Proresolving actions of a new resolvin D1 analog mimetic qualifies as an immunoresolvent. 2015 Am. J. Physiol. Lung Cell Mol. Physiol. pmid:25770181
Dalli J et al. Novel proresolving and tissue-regenerative resolvin and protectin sulfido-conjugated pathways. 2015 FASEB J. pmid:25713027
Guichardant M et al. Omega-3 polyunsaturated fatty acids and oxygenated metabolism in atherothrombosis. 2015 Biochim. Biophys. Acta pmid:25263947
Rossi S et al. Protection from endotoxic uveitis by intravitreal Resolvin D1: involvement of lymphocytes, miRNAs, ubiquitin-proteasome, and M1/M2 macrophages. 2015 Mediators Inflamm. pmid:25684860
Lastrucci C et al. Molecular and cellular profiles of the resolution phase in a damage-associated molecular pattern (DAMP)-mediated peritonitis model and revelation of leukocyte persistence in peritoneal tissues. 2015 FASEB J. pmid:25609430
Cespedes E et al. Adipose tissue n-3 fatty acids and metabolic syndrome. 2015 Eur J Clin Nutr pmid:25097001
Ting HC et al. Polyunsaturated fatty acids incorporation into cardiolipin in H9c2 cardiac myoblast. 2015 J. Nutr. Biochem. pmid:25866137
Valenzuela R et al. Modification of Docosahexaenoic Acid Composition of Milk from Nursing Women Who Received Alpha Linolenic Acid from Chia Oil during Gestation and Nursing. 2015 Nutrients pmid:26247968
Gavzan H et al. Synergistic effect of docosahexaenoic acid on anticonvulsant activity of valproic acid and lamotrigine in animal seizure models. 2015 Naunyn Schmiedebergs Arch. Pharmacol. pmid:26018398
Wang H et al. 4-Hydroxy-7-oxo-5-heptenoic Acid (HOHA) Lactone is a Biologically Active Precursor for the Generation of 2-(ω-Carboxyethyl)pyrrole (CEP) Derivatives of Proteins and Ethanolamine Phospholipids. 2015 Chem. Res. Toxicol. pmid:25793308
Akagi D et al. Systemic delivery of proresolving lipid mediators resolvin D2 and maresin 1 attenuates intimal hyperplasia in mice. 2015 FASEB J. pmid:25777995
Marinho GS et al. Lipids and Composition of Fatty Acids of Saccharina latissima Cultivated Year-Round in Integrated Multi-Trophic Aquaculture. 2015 Mar Drugs pmid:26184241
Koh AS et al. The association between dietary omega-3 fatty acids and cardiovascular death: the Singapore Chinese Health Study. 2015 Eur J Prev Cardiol pmid:24343844
Aursnes M et al. Synthesis of the 16S,17S-Epoxyprotectin Intermediate in the Biosynthesis of Protectins by Human Macrophages. 2015 J. Nat. Prod. pmid:26580578
Keim SA and Branum AM Dietary intake of polyunsaturated fatty acids and fish among US children 12-60 months of age. 2015 Matern Child Nutr pmid:24034437
Calandria JM et al. The Docosanoid Neuroprotectin D1 Induces TH-Positive Neuronal Survival in a Cellular Model of Parkinson's Disease. 2015 Cell. Mol. Neurobiol. pmid:26047923
Calandria JM et al. NPD1-mediated stereoselective regulation of BIRC3 expression through cREL is decisive for neural cell survival. 2015 Cell Death Differ. pmid:25633199
Musto AE et al. Hippocampal neuro-networks and dendritic spine perturbations in epileptogenesis are attenuated by neuroprotectin d1. 2015 PLoS ONE pmid:25617763
Dorninger F et al. Homeostasis of phospholipids - The level of phosphatidylethanolamine tightly adapts to changes in ethanolamine plasmalogens. 2015 Biochim. Biophys. Acta pmid:25463479
Orban T et al. Serum levels of lipid metabolites in age-related macular degeneration. 2015 FASEB J. pmid:26187344
Barden AE et al. Specialized proresolving lipid mediators in humans with the metabolic syndrome after n-3 fatty acids and aspirin. 2015 Am. J. Clin. Nutr. pmid:26561623
Park CK Maresin 1 Inhibits TRPV1 in Temporomandibular Joint-Related Trigeminal Nociceptive Neurons and TMJ Inflammation-Induced Synaptic Plasticity in the Trigeminal Nucleus. 2015 Mediators Inflamm. pmid:26617436
Krishnamoorthy N et al. Cutting edge: maresin-1 engages regulatory T cells to limit type 2 innate lymphoid cell activation and promote resolution of lung inflammation. 2015 J. Immunol. pmid:25539814
Askari M et al. Tissue fatty acid composition and secretory phospholipase-A2 activity in oral squamous cell carcinoma. 2015 Clin Transl Oncol pmid:25351172
Tyurina YY et al. LC/MS analysis of cardiolipins in substantia nigra and plasma of rotenone-treated rats: Implication for mitochondrial dysfunction in Parkinson's disease. 2015 Free Radic. Res. pmid:25740198
Hsieh JC et al. High-Oleic Ready-to-Use Therapeutic Food Maintains Docosahexaenoic Acid Status in Severe Malnutrition. 2015 J. Pediatr. Gastroenterol. Nutr. pmid:25633498
Jones PJ et al. High-oleic canola oil consumption enriches LDL particle cholesteryl oleate content and reduces LDL proteoglycan binding in humans. 2015 Atherosclerosis pmid:25528432
Nury T et al. Induction of oxiapoptophagy on 158N murine oligodendrocytes treated by 7-ketocholesterol-, 7β-hydroxycholesterol-, or 24(S)-hydroxycholesterol: Protective effects of α-tocopherol and docosahexaenoic acid (DHA; C22:6 n-3). 2015 Steroids pmid:25683890
Norris SE et al. Human prefrontal cortex phospholipids containing docosahexaenoic acid increase during normal adult aging, whereas those containing arachidonic acid decrease. 2015 Neurobiol. Aging pmid:25676385
Sekhon-Loodu S et al. Docosahexaenoic acid ester of phloridzin inhibit lipopolysaccharide-induced inflammation in THP-1 differentiated macrophages. 2015 Int. Immunopharmacol. pmid:25637769
Filipcikova R et al. Lycopene improves the distorted ratio between AA/DHA in the seminal plasma of infertile males and increases the likelihood of successful pregnancy. 2015 Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub pmid:23446211
Wang Y et al. Mesoscopic simulation studies on the formation mechanism of drug loaded polymeric micelles. 2015 Colloids Surf B Biointerfaces pmid:26454543
Li R et al. Enzymatic Synthesis of Refined Olive Oil-Based Structured Lipid Containing Omega -3 and -6 Fatty Acids for Potential Application in Infant Formula. 2015 J. Food Sci. pmid:26408984
Wendell SG et al. 15-Hydroxyprostaglandin dehydrogenase generation of electrophilic lipid signaling mediators from hydroxy ω-3 fatty acids. 2015 J. Biol. Chem. pmid:25586183
Chen CT et al. Plasma non-esterified docosahexaenoic acid is the major pool supplying the brain. 2015 Sci Rep pmid:26511533
Linhartova P and Sampels S Combined incubation of cadmium, docosahexaenoic and eicosapentaenoic acid results in increased uptake of cadmium and elevated docosapentaenoic acid content in hepatocytes in vitro. 2015 Lipids Health Dis pmid:26627047
Holen E et al. Combining eicosapentaenoic acid, decosahexaenoic acid and arachidonic acid, using a fully crossed design, affect gene expression and eicosanoid secretion in salmon head kidney cells in vitro. 2015 Fish Shellfish Immunol. pmid:26003739
Park HG et al. The fatty acid desaturase 2 (FADS2) gene product catalyzes Δ4 desaturation to yield n-3 docosahexaenoic acid and n-6 docosapentaenoic acid in human cells. 2015 FASEB J. pmid:26065859
Lim JY et al. Biological Roles of Resolvins and Related Substances in the Resolution of Pain. 2015 Biomed Res Int pmid:26339646
Hiram R et al. Resolvin E1 normalizes contractility, Ca2+ sensitivity and smooth muscle cell migration rate in TNF-α- and IL-6-pretreated human pulmonary arteries. 2015 Am. J. Physiol. Lung Cell Mol. Physiol. pmid:26320154
Schwager J et al. ω-3 PUFAs and Resveratrol Differently Modulate Acute and Chronic Inflammatory Processes. 2015 Biomed Res Int pmid:26301248
Lucena CF et al. Omega-3 supplementation improves pancreatic islet redox status: in vivo and in vitro studies. 2015 Pancreas pmid:25426612
Katakura M et al. Chronic Arachidonic Acid Administration Decreases Docosahexaenoic Acid- and Eicosapentaenoic Acid-Derived Metabolites in Kidneys of Aged Rats. 2015 PLoS ONE pmid:26485038
Chew EY et al. Effect of Omega-3 Fatty Acids, Lutein/Zeaxanthin, or Other Nutrient Supplementation on Cognitive Function: The AREDS2 Randomized Clinical Trial. 2015 JAMA pmid:26305649
Ross AB et al. Herring and Beef Meals Lead to Differences in Plasma 2-Aminoadipic Acid, β-Alanine, 4-Hydroxyproline, Cetoleic Acid, and Docosahexaenoic Acid Concentrations in Overweight Men. 2015 J. Nutr. pmid:26400963
Zgorzynska E et al. Docosahexaenoic acid attenuates oxidative stress and protects human gingival fibroblasts against cytotoxicity induced by hydrogen peroxide and butyric acid. 2015 Arch. Oral Biol. pmid:25455128
Honda KL et al. Docosahexaenoic acid differentially affects TNFα and IL-6 expression in LPS-stimulated RAW 264.7 murine macrophages. 2015 Prostaglandins Leukot. Essent. Fatty Acids pmid:25921297
Block RC et al. The effects of aspirin on platelet function and lysophosphatidic acids depend on plasma concentrations of EPA and DHA. 2015 Prostaglandins Leukot. Essent. Fatty Acids pmid:25555354
Cotogni P et al. The Omega-3 Fatty Acid Docosahexaenoic Acid Modulates Inflammatory Mediator Release in Human Alveolar Cells Exposed to Bronchoalveolar Lavage Fluid of ARDS Patients. 2015 Biomed Res Int pmid:26301250
Dodington DW et al. Higher Intakes of Fruits and Vegetables, β-Carotene, Vitamin C, α-Tocopherol, EPA, and DHA Are Positively Associated with Periodontal Healing after Nonsurgical Periodontal Therapy in Nonsmokers but Not in Smokers. 2015 J. Nutr. pmid:26423734
Bobiński R and Mikulska M The ins and outs of maternal-fetal fatty acid metabolism. 2015 Acta Biochim. Pol. pmid:26345097
Hieda K et al. Pharmacological effect of functional foods with a hypotensive action. 2015 Nippon Yakurigaku Zasshi pmid:26165340
Mansara PP et al. Differential Ratios of Omega Fatty Acids (AA/EPA+DHA) Modulate Growth, Lipid Peroxidation and Expression of Tumor Regulatory MARBPs in Breast Cancer Cell Lines MCF7 and MDA-MB-231. 2015 PLoS ONE pmid:26325577
Domenichiello AF et al. Is docosahexaenoic acid synthesis from α-linolenic acid sufficient to supply the adult brain? 2015 Prog. Lipid Res. pmid:25920364
Kawakami Y et al. Flaxseed oil intake reduces serum small dense low-density lipoprotein concentrations in Japanese men: a randomized, double blind, crossover study. 2015 Nutr J pmid:25896182