DHA

Dha is a lipid of Fatty Acyls (FA) class. Dha is associated with abnormalities such as Atherosclerosis, Consumption-archaic term for TB, Chronic disease, Cardiovascular Diseases and Diabetes Mellitus, Non-Insulin-Dependent. The involved functions are known as Inflammation, Oxidation, fatty acid oxidation, Fatty Acid Metabolism and Lipid Metabolism. Dha often locates in Hepatic, Protoplasm, Mucous Membrane, Epithelium and outer membrane. The associated genes with DHA are IMPACT gene, FATE1 gene, GAPDH gene, THOC4 gene and SLC33A1 gene. The related lipids are stearidonic acid, Fatty Acids, Total cholesterol, Lipopolysaccharides and Dietary Fatty Acid. The related experimental models are Mouse Model, Transgenic Model, Animal Disease Models and Arthritis, Experimental.

Cross Reference

Introduction

To understand associated biological information of DHA, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with DHA?

DHA is suspected in Cardiovascular Diseases, Obesity, Ischemia, Hypertensive disease, Coronary Arteriosclerosis, Cerebrovascular accident and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with DHA

MeSH term MeSH ID Detail
Myocardial Reperfusion Injury D015428 20 associated lipids
Erythema D004890 22 associated lipids
Neoplasms, Hormone-Dependent D009376 23 associated lipids
Spinal Cord Injuries D013119 34 associated lipids
Ventricular Fibrillation D014693 16 associated lipids
Anaphylaxis D000707 35 associated lipids
Hyperlipidemias D006949 73 associated lipids
Pneumonia D011014 10 associated lipids
Coronary Artery Disease D003324 47 associated lipids
Encephalomyelitis, Autoimmune, Experimental D004681 26 associated lipids
Catalepsy D002375 30 associated lipids
Dermatitis, Atopic D003876 19 associated lipids
Vitamin E Deficiency D014811 29 associated lipids
Cardiomegaly D006332 31 associated lipids
Leiomyoma D007889 8 associated lipids
Niemann-Pick Diseases D009542 25 associated lipids
Peritoneal Neoplasms D010534 16 associated lipids
Nutrition Disorders D009748 6 associated lipids
Glomerulonephritis, IGA D005922 7 associated lipids
Pregnancy Complications, Cardiovascular D011249 11 associated lipids
Cardiomyopathy, Dilated D002311 15 associated lipids
Uveitis D014605 14 associated lipids
Biliary Atresia D001656 4 associated lipids
Cachexia D002100 21 associated lipids
Arthus Reaction D001183 8 associated lipids
Learning Disorders D007859 11 associated lipids
Retinitis Pigmentosa D012174 6 associated lipids
Angina Pectoris D000787 27 associated lipids
Angina, Unstable D000789 14 associated lipids
Vascular Diseases D014652 16 associated lipids
Pregnancy Complications, Hematologic D011250 11 associated lipids
Heart Defects, Congenital D006330 20 associated lipids
Listeriosis D008088 12 associated lipids
Anemia D000740 21 associated lipids
Infant, Premature, Diseases D007235 7 associated lipids
Hyperlipoproteinemias D006951 15 associated lipids
Fatty Liver, Alcoholic D005235 11 associated lipids
Keratitis D007634 7 associated lipids
Parkinson Disease D010300 53 associated lipids
Down Syndrome D004314 18 associated lipids
Carcinoma 256, Walker D002279 22 associated lipids
Central Nervous System Diseases D002493 10 associated lipids
Albinism D000417 3 associated lipids
Thymus Neoplasms D013953 15 associated lipids
Dysmenorrhea D004412 9 associated lipids
Myocarditis D009205 3 associated lipids
Influenza, Human D007251 11 associated lipids
Abortion, Habitual D000026 5 associated lipids
Basal Ganglia Diseases D001480 8 associated lipids
Dyskinesia, Drug-Induced D004409 15 associated lipids
Retinal Detachment D012163 10 associated lipids
Carcinoma, Lewis Lung D018827 22 associated lipids
Choline Deficiency D002796 16 associated lipids
Medulloblastoma D008527 22 associated lipids
Zellweger Syndrome D015211 39 associated lipids
Atrial Fibrillation D001281 16 associated lipids
Coronary Thrombosis D003328 7 associated lipids
Ventricular Dysfunction, Left D018487 33 associated lipids
Aortic Diseases D001018 11 associated lipids
Genetic Predisposition to Disease D020022 24 associated lipids
Hepatitis C D006526 7 associated lipids
Atherosclerosis D050197 85 associated lipids
Leukemia-Lymphoma, Adult T-Cell D015459 25 associated lipids
Multiple Sclerosis, Relapsing-Remitting D020529 7 associated lipids
Metabolic Syndrome D024821 44 associated lipids
Dyslexia D004410 3 associated lipids
Hypercalciuria D053565 4 associated lipids
Diabetes, Gestational D016640 8 associated lipids
Acute Coronary Syndrome D054058 11 associated lipids
Plaque, Atherosclerotic D058226 7 associated lipids
Malnutrition D044342 6 associated lipids
Insulin Resistance D007333 99 associated lipids
Diabetes Complications D048909 4 associated lipids
Sleep Apnea, Obstructive D020181 9 associated lipids
Peripheral Arterial Disease D058729 7 associated lipids
Intracranial Arteriosclerosis D002537 4 associated lipids
Macular Degeneration D008268 5 associated lipids
Dyslipidemias D050171 7 associated lipids
Asthma, Exercise-Induced D001250 10 associated lipids
Deficiency Diseases D003677 12 associated lipids
Pregnancy Complications D011248 19 associated lipids
Myoglobinuria D009212 3 associated lipids
Weight Loss D015431 56 associated lipids
Critical Illness D016638 13 associated lipids
Blister D001768 16 associated lipids
Memory Disorders D008569 33 associated lipids
Glucose Intolerance D018149 13 associated lipids
Parkinson Disease, Secondary D010302 17 associated lipids
Dry Eye Syndromes D015352 10 associated lipids
Acute Lung Injury D055371 33 associated lipids
Death, Sudden, Cardiac D016757 12 associated lipids
Neurodegenerative Diseases D019636 32 associated lipids
Lupus Nephritis D008181 8 associated lipids
Parkinsonian Disorders D020734 20 associated lipids
Neuralgia D009437 28 associated lipids
Peripheral Nerve Injuries D059348 6 associated lipids
Muscular Dystrophy, Duchenne D020388 11 associated lipids
Keratitis, Herpetic D016849 5 associated lipids
Sleep Wake Disorders D012893 7 associated lipids
Burkholderia Infections D019121 7 associated lipids
Per page 10 20 50 100 | Total 240

PubChem Associated disorders and diseases

What pathways are associated with DHA

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with DHA?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with DHA?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with DHA?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with DHA?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with DHA?

Mouse Model

Mouse Model are used in the study 'Homeostatic regulation of photoreceptor cell integrity: significance of the potent mediator neuroprotectin D1 biosynthesized from docosahexaenoic acid: the Proctor Lecture.' (Bazan NG, 2007), Mouse Model are used in the study 'Omega-3 fatty acids EPA and DHA: health benefits throughout life.' (Swanson D et al., 2012), Mouse Model are used in the study 'Docosahexaenoic acid attenuates hepatic inflammation, oxidative stress, and fibrosis without decreasing hepatosteatosis in a Ldlr(-/-) mouse model of western diet-induced nonalcoholic steatohepatitis.' (Depner CM et al., 2013) and Mouse Model are used in the study 'Wax esters from the marine copepod Calanus finmarchicus reduce diet-induced obesity and obesity-related metabolic disorders in mice.' (Höper AC et al., 2014).

Transgenic Model

Transgenic Model are used in the study 'Loss of MAP function leads to hippocampal synapse loss and deficits in the Morris Water Maze with aging.' (Ma QL et al., 2014).

Animal Disease Models

Animal Disease Models are used in the study 'Fish oil increases muscle protein mass and modulates Akt/FOXO, TLR4, and NOD signaling in weanling piglets after lipopolysaccharide challenge.' (Liu Y et al., 2013).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with DHA

Download all related citations
Per page 10 20 50 100 | Total 7336
Authors Title Published Journal PubMed Link
Fernández-González R et al. Decontamination solutions for polychlorinated biphenyls (PCBs) in raw fish oils from environmentally contaminated sea fishes. 2014 Sci. Total Environ. pmid:24095964
Amiano P et al. Intake of total omega-3 fatty acids, eicosapentaenoic acid and docosahexaenoic acid and risk of coronary heart disease in the Spanish EPIC cohort study. 2014 Nutr Metab Cardiovasc Dis pmid:24360762
Currais A et al. Modulation of p25 and inflammatory pathways by fisetin maintains cognitive function in Alzheimer's disease transgenic mice. 2014 Aging Cell pmid:24341874
Hennebelle M et al. Ageing and apoE change DHA homeostasis: relevance to age-related cognitive decline. 2014 Proc Nutr Soc pmid:24103099
Jilkova ZM et al. Adipose tissue-related proteins locally associated with resolution of inflammation in obese mice. 2014 Int J Obes (Lond) pmid:23756677
De Mel D and Suphioglu C Fishy business: effect of omega-3 fatty acids on zinc transporters and free zinc availability in human neuronal cells. 2014 Nutrients pmid:25195602
Chua A et al. Effect of docosahexaenoic acid and furan fatty acids on cytokinesis block micronucleus cytome assay biomarkers in astrocytoma cell lines under conditions of oxidative stress. 2014 Environ. Mol. Mutagen. pmid:24828973
Hong S et al. Neuroprotectin/protectin D1: endogenous biosynthesis and actions on diabetic macrophages in promoting wound healing and innervation impaired by diabetes. 2014 Am. J. Physiol., Cell Physiol. pmid:25273880
Ma QL et al. Loss of MAP function leads to hippocampal synapse loss and deficits in the Morris Water Maze with aging. 2014 J. Neurosci. pmid:24849348
Tungen JE et al. Synthesis and anti-inflammatory and pro-resolving activities of 22-OH-PD1, a monohydroxylated metabolite of protectin D1. 2014 J. Nat. Prod. pmid:25247845
McCauley LK et al. Cutting edge: Parathyroid hormone facilitates macrophage efferocytosis in bone marrow via proresolving mediators resolvin D1 and resolvin D2. 2014 J. Immunol. pmid:24890726
Serhan CN Pro-resolving lipid mediators are leads for resolution physiology. 2014 Nature pmid:24899309
[Recommendations of the Polish Gynecological Society concerning docosahexaenoic acid supplementation in the prevention of preterm birth]. 2014 Ginekol. Pol. pmid:24834713
Abdulnour RE et al. Maresin 1 biosynthesis during platelet-neutrophil interactions is organ-protective. 2014 Proc. Natl. Acad. Sci. U.S.A. pmid:25369934
Chan SS et al. Association between high dietary intake of the n-3 polyunsaturated fatty acid docosahexaenoic acid and reduced risk of Crohn's disease. 2014 Aliment. Pharmacol. Ther. pmid:24611981
Aursnes M et al. Stereoselective synthesis of protectin D1: a potent anti-inflammatory and proresolving lipid mediator. 2014 Org. Biomol. Chem. pmid:24253202
Evans SJ et al. Dietary intake and plasma metabolomic analysis of polyunsaturated fatty acids in bipolar subjects reveal dysregulation of linoleic acid metabolism. 2014 J Psychiatr Res pmid:24953860
Mussi SV et al. Novel nanostructured lipid carrier co-loaded with doxorubicin and docosahexaenoic acid demonstrates enhanced in vitro activity and overcomes drug resistance in MCF-7/Adr cells. 2014 Pharm. Res. pmid:24522814
Santos S et al. Fatty acids derived from a food frequency questionnaire and measured in the erythrocyte membrane in relation to adiponectin and leptin concentrations. 2014 Eur J Clin Nutr pmid:24642786
Torres M et al. Membrane lipid modifications and therapeutic effects mediated by hydroxydocosahexaenoic acid on Alzheimer's disease. 2014 Biochim. Biophys. Acta pmid:24374316
Liu X et al. Amide-type adduct of dopamine - plausible cause of Parkinson diseases. 2014 Subcell. Biochem. pmid:24374917
De Felice C et al. Oxidative brain damage in Mecp2-mutant murine models of Rett syndrome. 2014 Neurobiol. Dis. pmid:24769161
Sengupta A and Ghosh M Effect of sterol esters on lipid composition and antioxidant status of erythrocyte membrane of hypercholesterolemic rats. 2014 J Oleo Sci pmid:24770475
Cui ZG et al. Molecular mechanisms of hyperthermia-induced apoptosis enhanced by docosahexaenoic acid: implication for cancer therapy. 2014 Chem. Biol. Interact. pmid:24661947
Adarme-Vega TC et al. Towards sustainable sources for omega-3 fatty acids production. 2014 Curr. Opin. Biotechnol. pmid:24607804
Aronow ME and Chew EY Age-related Eye Disease Study 2: perspectives, recommendations, and unanswered questions. 2014 Curr Opin Ophthalmol pmid:24614146
Wang Q et al. Resolvin D1 stimulates alveolar fluid clearance through alveolar epithelial sodium channel, Na,K-ATPase via ALX/cAMP/PI3K pathway in lipopolysaccharide-induced acute lung injury. 2014 J. Immunol. pmid:24646745
Pottala JV et al. Higher RBC EPA + DHA corresponds with larger total brain and hippocampal volumes: WHIMS-MRI study. 2014 Neurology pmid:24453077
O'Callaghan N et al. Telomere shortening in elderly individuals with mild cognitive impairment may be attenuated with ω-3 fatty acid supplementation: a randomized controlled pilot study. 2014 Nutrition pmid:24342530
Martorell M et al. Effect of DHA on plasma fatty acid availability and oxidative stress during training season and football exercise. 2014 Food Funct pmid:24955731
Kitessa SM et al. DHA-containing oilseed: a timely solution for the sustainability issues surrounding fish oil sources of the health-benefitting long-chain omega-3 oils. 2014 Nutrients pmid:24858407
Murali G et al. Differential effects of eicosapentaenoic acid and docosahexaenoic acid in promoting the differentiation of 3T3-L1 preadipocytes. 2014 Prostaglandins Leukot. Essent. Fatty Acids pmid:24332315
Walhovd KB et al. Blood markers of fatty acids and vitamin D, cardiovascular measures, body mass index, and physical activity relate to longitudinal cortical thinning in normal aging. 2014 Neurobiol. Aging pmid:24332985
Eto M et al. A novel lysophosphatidic acid acyltransferase enzyme (LPAAT4) with a possible role for incorporating docosahexaenoic acid into brain glycerophospholipids. 2014 Biochem. Biophys. Res. Commun. pmid:24333445
Nelson JW et al. ALX/FPR2 receptor for RvD1 is expressed and functional in salivary glands. 2014 Am. J. Physiol., Cell Physiol. pmid:24259417
O'Sullivan A et al. Habitual diets rich in dark-green vegetables are associated with an increased response to ω-3 fatty acid supplementation in Americans of African ancestry. 2014 J. Nutr. pmid:24259553
Cipollina C et al. Dual anti-oxidant and anti-inflammatory actions of the electrophilic cyclooxygenase-2-derived 17-oxo-DHA in lipopolysaccharide- and cigarette smoke-induced inflammation. 2014 Biochim. Biophys. Acta pmid:24594225
Siddiqui RA et al. Characterization of lovastatin-docosahexaenoate anticancer properties against breast cancer cells. 2014 Bioorg. Med. Chem. pmid:24556504
Bauer I et al. Does omega-3 fatty acid supplementation enhance neural efficiency? A review of the literature. 2014 Hum Psychopharmacol pmid:24285504
Höper AC et al. Wax esters from the marine copepod Calanus finmarchicus reduce diet-induced obesity and obesity-related metabolic disorders in mice. 2014 J. Nutr. pmid:24285691
Sublimi Saponetti M et al. Aggregation of Aß(25-35) on DOPC and DOPC/DHA bilayers: an atomic force microscopy study. 2014 PLoS ONE pmid:25551704
Hong S et al. Maresin-like lipid mediators are produced by leukocytes and platelets and rescue reparative function of diabetes-impaired macrophages. 2014 Chem. Biol. pmid:25200603
Cho Y et al. Colon cancer cell apoptosis is induced by combined exposure to the n-3 fatty acid docosahexaenoic acid and butyrate through promoter methylation. 2014 Exp. Biol. Med. (Maywood) pmid:24495951
Ponnampalam EN et al. Sources of variation of health claimable long chain omega-3 fatty acids in meat from Australian lamb slaughtered at similar weights. 2014 Meat Sci. pmid:23265412
Park J et al. Reciprocal modulation of surface expression of annexin A2 in a human umbilical vein endothelial cell-derived cell line by eicosapentaenoic acid and docosahexaenoic acid. 2014 PLoS ONE pmid:24465474
Eady TN et al. Docosahexaenoic acid complexed to albumin provides neuroprotection after experimental stroke in aged rats. 2014 Neurobiol. Dis. pmid:24063996
Tang H et al. Protective actions of aspirin-triggered (17R) resolvin D1 and its analogue, 17R-hydroxy-19-para-fluorophenoxy-resolvin D1 methyl ester, in C5a-dependent IgG immune complex-induced inflammation and lung injury. 2014 J. Immunol. pmid:25172497
Montgomery P et al. Fatty acids and sleep in UK children: subjective and pilot objective sleep results from the DOLAB study--a randomized controlled trial. 2014 J Sleep Res pmid:24605819
Walker CG et al. Age and sex differences in the incorporation of EPA and DHA into plasma fractions, cells and adipose tissue in humans. 2014 Br. J. Nutr. pmid:24063767
Zheng MG et al. Cloning, expression and stress-respondent transcription of long-chain acyl-coenzyme A synthetase cDNA gene of Nannochloropsis gaditana and its involvement in the biosynthesis of eicosapentaenoic and decosahexaenoic acids. 2014 Biotechnol. Lett. pmid:24068506