DHA

Dha is a lipid of Fatty Acyls (FA) class. Dha is associated with abnormalities such as Atherosclerosis, Consumption-archaic term for TB, Chronic disease, Cardiovascular Diseases and Diabetes Mellitus, Non-Insulin-Dependent. The involved functions are known as Inflammation, Oxidation, fatty acid oxidation, Fatty Acid Metabolism and Lipid Metabolism. Dha often locates in Hepatic, Protoplasm, Mucous Membrane, Epithelium and outer membrane. The associated genes with DHA are IMPACT gene, FATE1 gene, GAPDH gene, THOC4 gene and SLC33A1 gene. The related lipids are stearidonic acid, Fatty Acids, Total cholesterol, Lipopolysaccharides and Dietary Fatty Acid. The related experimental models are Mouse Model, Transgenic Model, Animal Disease Models and Arthritis, Experimental.

Cross Reference

Introduction

To understand associated biological information of DHA, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with DHA?

DHA is suspected in Cardiovascular Diseases, Obesity, Ischemia, Hypertensive disease, Coronary Arteriosclerosis, Cerebrovascular accident and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with DHA

MeSH term MeSH ID Detail
Autoimmune Diseases D001327 27 associated lipids
Lupus Erythematosus, Systemic D008180 43 associated lipids
Lung Diseases D008171 37 associated lipids
Lung Neoplasms D008175 171 associated lipids
Pulmonary Fibrosis D011658 24 associated lipids
Burns D002056 34 associated lipids
Pancreatic Neoplasms D010190 77 associated lipids
Inflammation D007249 119 associated lipids
Reperfusion Injury D015427 65 associated lipids
Colitis D003092 69 associated lipids
Per page 10 20 50 100 | Total 240

PubChem Associated disorders and diseases

What pathways are associated with DHA

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with DHA?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with DHA?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with DHA?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with DHA?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with DHA?

Mouse Model

Mouse Model are used in the study 'Homeostatic regulation of photoreceptor cell integrity: significance of the potent mediator neuroprotectin D1 biosynthesized from docosahexaenoic acid: the Proctor Lecture.' (Bazan NG, 2007), Mouse Model are used in the study 'Omega-3 fatty acids EPA and DHA: health benefits throughout life.' (Swanson D et al., 2012), Mouse Model are used in the study 'Docosahexaenoic acid attenuates hepatic inflammation, oxidative stress, and fibrosis without decreasing hepatosteatosis in a Ldlr(-/-) mouse model of western diet-induced nonalcoholic steatohepatitis.' (Depner CM et al., 2013) and Mouse Model are used in the study 'Wax esters from the marine copepod Calanus finmarchicus reduce diet-induced obesity and obesity-related metabolic disorders in mice.' (Höper AC et al., 2014).

Transgenic Model

Transgenic Model are used in the study 'Loss of MAP function leads to hippocampal synapse loss and deficits in the Morris Water Maze with aging.' (Ma QL et al., 2014).

Animal Disease Models

Animal Disease Models are used in the study 'Fish oil increases muscle protein mass and modulates Akt/FOXO, TLR4, and NOD signaling in weanling piglets after lipopolysaccharide challenge.' (Liu Y et al., 2013).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with DHA

Download all related citations
Per page 10 20 50 100 | Total 7336
Authors Title Published Journal PubMed Link
pmid:27288396
pmid:27290652
pmid:27297029
pmid:27297719
pmid:27300112
pmid:27305642
pmid:27306896
Dewsbury CE et al. Topical eicosapentaenoic acid (EPA) in the treatment of psoriasis. 1989 Br. J. Dermatol. pmid:2730847
pmid:27310371
Kuda O et al. Docosahexaenoic Acid-Derived Fatty Acid Esters of Hydroxy Fatty Acids (FAHFAs) With Anti-inflammatory Properties. 2016 Diabetes pmid:27313314
Kim KH et al. Resolvin D1 prevents smoking-induced emphysema and promotes lung tissue regeneration. 2016 Int J Chron Obstruct Pulmon Dis pmid:27313451
Cinelli G et al. Influence of Maternal Obesity and Gestational Weight Gain on Maternal and Foetal Lipid Profile. 2016 Nutrients pmid:27314385
pmid:27317426
pmid:27320930
Kim SM et al. Role of Inflammatory Signaling in the Differential Effects of Saturated and Poly-unsaturated Fatty Acids on Peripheral Circadian Clocks. 2016 EBioMedicine pmid:27322464
pmid:27326703
pmid:27329536
Suzuki-Kemuriyama N et al. Different Effects of Eicosapentaenoic and Docosahexaenoic Acids on Atherogenic High-Fat Diet-Induced Non-Alcoholic Fatty Liver Disease in Mice. 2016 PLoS ONE pmid:27333187
pmid:27337155
pmid:27340271
Andersen MK et al. Identification of Novel Genetic Determinants of Erythrocyte Membrane Fatty Acid Composition among Greenlanders. 2016 PLoS Genet. pmid:27341449
pmid:27344384
pmid:27346268
pmid:27346378
pmid:27347995
pmid:27353954
pmid:27355428
pmid:27356083
Del Gobbo LC et al. ω-3 Polyunsaturated Fatty Acid Biomarkers and Coronary Heart Disease: Pooling Project of 19 Cohort Studies. 2016 JAMA Intern Med pmid:27357102
pmid:27358067
pmid:27362506
pmid:27362771
pmid:27362973
pmid:27363023
Ghosh S et al. Epigenomic maintenance through dietary intervention can facilitate DNA repair process to slow down the progress of premature aging. 2016 IUBMB Life pmid:27364681
pmid:27367296
pmid:27374222
pmid:27374575
pmid:27384606
pmid:27387342
pmid:27388608
Visentin S et al. Red blood cell membrane fatty acid composition in infants fed formulas with different lipid profiles. 2016 Early Hum. Dev. pmid:27391868
pmid:27394149
pmid:27395062
pmid:27397734
pmid:27398790
pmid:27401364
pmid:27411172
pmid:27415853
pmid:27418237
pmid:27418399
pmid:27424010
pmid:27424661
pmid:27426000
pmid:27426008
pmid:27426911
pmid:27428262
Chernenko GA et al. Intestinal absorption and lymphatic transport of fish oil (MaxEPA) in the rat. 1989 Biochim. Biophys. Acta pmid:2742878
pmid:27429125
pmid:27433934
pmid:27436589
pmid:27440746
pmid:27444154
pmid:27454884
pmid:27457215
pmid:27461654
Gao J et al. Maternal DHA supplementation protects rat offspring against impairment of learning and memory following prenatal exposure to valproic acid. 2016 J. Nutr. Biochem. pmid:27469996
pmid:27470615
pmid:27473885
Graciano MF et al. Omega-3 fatty acids control productions of superoxide and nitrogen oxide and insulin content in INS-1E cells. 2016 J. Physiol. Biochem. pmid:27474043
pmid:27480845
pmid:27490922
Lo Van A et al. Mechanisms of DHA transport to the brain and potential therapy to neurodegenerative diseases. 2016 Biochimie pmid:27496085
pmid:27496755
pmid:27499448
pmid:27499449
pmid:27500566
pmid:27502791
pmid:27507074
Zhang MJ et al. Resolvin D2 Enhances Postischemic Revascularization While Resolving Inflammation. 2016 Circulation pmid:27507404
pmid:27508346
pmid:27513579
pmid:27513935
pmid:27514858
Lam SM et al. Biological relevance of fatty acyl heterogeneity to the neural membrane dynamics of rhesus macaques during normative aging. 2016 Oncotarget pmid:27517158
pmid:27519299
pmid:27527148
pmid:27530945
Viola JR et al. Resolving Lipid Mediators Maresin 1 and Resolvin D2 Prevent Atheroprogression in Mice. 2016 Circ. Res. pmid:27531933
pmid:27532692
pmid:27535497
pmid:27536971
pmid:27538010
pmid:27539313
pmid:27542462
Park HG et al. Metabolic fate of docosahexaenoic acid (DHA; 22:6n-3) in human cells: direct retroconversion of DHA to eicosapentaenoic acid (20:5n-3) dominates over elongation to tetracosahexaenoic acid (24:6n-3). 2016 FEBS Lett. pmid:27543786
pmid:27546289
pmid:27552592
pmid:27554670
Nuez-Ortín WG et al. Preliminary Validation of a High Docosahexaenoic Acid (DHA) and -Linolenic Acid (ALA) Dietary Oil Blend: Tissue Fatty Acid Composition and Liver Proteome Response in Atlantic Salmon (Salmo salar) Smolts. 2016 PLoS ONE pmid:27556399