DHA

Dha is a lipid of Fatty Acyls (FA) class. Dha is associated with abnormalities such as Atherosclerosis, Consumption-archaic term for TB, Chronic disease, Cardiovascular Diseases and Diabetes Mellitus, Non-Insulin-Dependent. The involved functions are known as Inflammation, Oxidation, fatty acid oxidation, Fatty Acid Metabolism and Lipid Metabolism. Dha often locates in Hepatic, Protoplasm, Mucous Membrane, Epithelium and outer membrane. The associated genes with DHA are IMPACT gene, FATE1 gene, GAPDH gene, THOC4 gene and SLC33A1 gene. The related lipids are stearidonic acid, Fatty Acids, Total cholesterol, Lipopolysaccharides and Dietary Fatty Acid. The related experimental models are Mouse Model, Transgenic Model, Animal Disease Models and Arthritis, Experimental.

Cross Reference

Introduction

To understand associated biological information of DHA, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with DHA?

DHA is suspected in Cardiovascular Diseases, Obesity, Ischemia, Hypertensive disease, Coronary Arteriosclerosis, Cerebrovascular accident and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with DHA

MeSH term MeSH ID Detail
Myoglobinuria D009212 3 associated lipids
Albinism D000417 3 associated lipids
Short Bowel Syndrome D012778 3 associated lipids
Depression, Postpartum D019052 3 associated lipids
Dyskinesias D020820 3 associated lipids
Biliary Atresia D001656 4 associated lipids
Spinocerebellar Ataxias D020754 4 associated lipids
Milk Hypersensitivity D016269 4 associated lipids
Diabetes Complications D048909 4 associated lipids
Hypercalciuria D053565 4 associated lipids
Per page 10 20 50 100 | Total 240

PubChem Associated disorders and diseases

What pathways are associated with DHA

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with DHA?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with DHA?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with DHA?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with DHA?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with DHA?

Mouse Model

Mouse Model are used in the study 'Homeostatic regulation of photoreceptor cell integrity: significance of the potent mediator neuroprotectin D1 biosynthesized from docosahexaenoic acid: the Proctor Lecture.' (Bazan NG, 2007), Mouse Model are used in the study 'Omega-3 fatty acids EPA and DHA: health benefits throughout life.' (Swanson D et al., 2012), Mouse Model are used in the study 'Docosahexaenoic acid attenuates hepatic inflammation, oxidative stress, and fibrosis without decreasing hepatosteatosis in a Ldlr(-/-) mouse model of western diet-induced nonalcoholic steatohepatitis.' (Depner CM et al., 2013) and Mouse Model are used in the study 'Wax esters from the marine copepod Calanus finmarchicus reduce diet-induced obesity and obesity-related metabolic disorders in mice.' (Höper AC et al., 2014).

Transgenic Model

Transgenic Model are used in the study 'Loss of MAP function leads to hippocampal synapse loss and deficits in the Morris Water Maze with aging.' (Ma QL et al., 2014).

Animal Disease Models

Animal Disease Models are used in the study 'Fish oil increases muscle protein mass and modulates Akt/FOXO, TLR4, and NOD signaling in weanling piglets after lipopolysaccharide challenge.' (Liu Y et al., 2013).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with DHA

Download all related citations
Per page 10 20 50 100 | Total 7336
Authors Title Published Journal PubMed Link
pmid:27106721
pmid:27105870
pmid:27103682
pmid:27103520
pmid:27102911
pmid:27101763
Zhao YL et al. Resolvin D1 Protects Lipopolysaccharide-induced Acute Kidney Injury by Down-regulating Nuclear Factor-kappa B Signal and Inhibiting Apoptosis. 2016 Chin. Med. J. pmid:27098797
pmid:27098595
McNamara RK and Welge JA Meta-analysis of erythrocyte polyunsaturated fatty acid biostatus in bipolar disorder. 2016 Bipolar Disord pmid:27087497
pmid:27085996
pmid:27085899
pmid:27084093
pmid:27082436
pmid:27079734
pmid:27077882
pmid:27072238
pmid:27071510
pmid:27069145
pmid:27065260
pmid:27065243
Wang CS et al. ALX/FPR2 Modulates Anti-Inflammatory Responses in Mouse Submandibular Gland. 2016 Sci Rep pmid:27064029
pmid:27062407
pmid:27058527
pmid:27058043
Benabdoune H et al. The role of resolvin D1 in the regulation of inflammatory and catabolic mediators in osteoarthritis. 2016 Inflamm. Res. pmid:27056390
pmid:27056340
pmid:27052441
pmid:27051354
pmid:27044662
pmid:27044510
pmid:27044314
pmid:27044027
pmid:27041691
pmid:27041321
pmid:27041244
Nury T et al. 7-Ketocholesterol is increased in the plasma of X-ALD patients and induces peroxisomal modifications in microglial cells: Potential roles of 7-ketocholesterol in the pathophysiology of X-ALD. 2017 J. Steroid Biochem. Mol. Biol. pmid:27041118
pmid:27041074
pmid:27038174
pmid:27036332
pmid:27036235
pmid:27036017
pmid:27035283
pmid:27034958
pmid:27034112
pmid:27033423
pmid:27033419
pmid:27033026
pmid:27030957
pmid:27030533
Shi H et al. VIP protects human retinal microvascular endothelial cells against high glucose-induced increases in TNF-α and enhances RvD1. 2016 Prostaglandins Other Lipid Mediat. pmid:27026343
pmid:27025886
pmid:27025599
pmid:27021216
pmid:27019087
pmid:27013482
pmid:27012860
pmid:27012767
pmid:27012630
pmid:27011315
pmid:27011294
Zhao Q et al. Resolvin D1 mitigates energy metabolism disorder after ischemia-reperfusion of the rat lung. 2016 J Transl Med pmid:27009328
Wong BH et al. Mfsd2a Is a Transporter for the Essential ω-3 Fatty Acid Docosahexaenoic Acid (DHA) in Eye and Is Important for Photoreceptor Cell Development. 2016 J. Biol. Chem. pmid:27008858
Barden A et al. n-3 Fatty Acid Supplementation and Leukocyte Telomere Length in Patients with Chronic Kidney Disease. 2016 Nutrients pmid:27007392
pmid:27006231
pmid:27005961
pmid:27005636
pmid:26993989
pmid:26988493
pmid:26987422
Hofmanová J et al. Dietary fatty acids specifically modulate phospholipid pattern in colon cells with distinct differentiation capacities. 2017 Eur J Nutr pmid:26983609
pmid:26978738
pmid:26978737
pmid:26975734
pmid:26973393
Schmid M et al. Resolvin D1 Polarizes Primary Human Macrophages toward a Proresolution Phenotype through GPR32. 2016 J. Immunol. pmid:26969756
Bascoul-Colombo C et al. Dietary DHA supplementation causes selective changes in phospholipids from different brain regions in both wild type mice and the Tg2576 mouse model of Alzheimer's disease. 2016 Biochim. Biophys. Acta pmid:26968097
pmid:26965310
pmid:26965251
pmid:26961929
pmid:26960871
pmid:26959819
pmid:26955849
Kondreddy VK and Kamatham AN Celecoxib, a COX-2 inhibitor, synergistically potentiates the anti-inflammatory activity of docosahexaenoic acid in macrophage cell line. 2016 Immunopharmacol Immunotoxicol pmid:26954392
Minihane AM Impact of Genotype on EPA and DHA Status and Responsiveness to Increased Intakes. 2016 Nutrients pmid:26950146
pmid:26942868
pmid:26940787
pmid:26939082
pmid:26939043
Sui YH et al. Dietary saturated fatty acid and polyunsaturated fatty acid oppositely affect hepatic NOD-like receptor protein 3 inflammasome through regulating nuclear factor-kappa B activation. 2016 World J. Gastroenterol. pmid:26937141
pmid:26934519
pmid:26930527
pmid:26927755
Dart AM et al. Effects of Maxepa on serum lipids in hypercholesterolaemic subjects. 1989 Atherosclerosis pmid:2692571
pmid:26924304
Tran DQ et al. Induction of Gnrh mRNA expression by the ω-3 polyunsaturated fatty acid docosahexaenoic acid and the saturated fatty acid palmitate in a GnRH-synthesizing neuronal cell model, mHypoA-GnRH/GFP. 2016 Mol. Cell. Endocrinol. pmid:26923440
pmid:26922534
Zarrouk A et al. Attenuation of 7-ketocholesterol-induced overproduction of reactive oxygen species, apoptosis, and autophagy by dimethyl fumarate on 158N murine oligodendrocytes. 2017 J. Steroid Biochem. Mol. Biol. pmid:26921765
pmid:26920136
pmid:26915798
Heskey CE et al. Adipose tissue α-linolenic acid is inversely associated with insulin resistance in adults. 2016 Am. J. Clin. Nutr. pmid:26912497