DHA

Dha is a lipid of Fatty Acyls (FA) class. Dha is associated with abnormalities such as Atherosclerosis, Consumption-archaic term for TB, Chronic disease, Cardiovascular Diseases and Diabetes Mellitus, Non-Insulin-Dependent. The involved functions are known as Inflammation, Oxidation, fatty acid oxidation, Fatty Acid Metabolism and Lipid Metabolism. Dha often locates in Hepatic, Protoplasm, Mucous Membrane, Epithelium and outer membrane. The associated genes with DHA are IMPACT gene, FATE1 gene, GAPDH gene, THOC4 gene and SLC33A1 gene. The related lipids are stearidonic acid, Fatty Acids, Total cholesterol, Lipopolysaccharides and Dietary Fatty Acid. The related experimental models are Mouse Model, Transgenic Model, Animal Disease Models and Arthritis, Experimental.

Cross Reference

Introduction

To understand associated biological information of DHA, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with DHA?

DHA is suspected in Cardiovascular Diseases, Obesity, Ischemia, Hypertensive disease, Coronary Arteriosclerosis, Cerebrovascular accident and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with DHA

MeSH term MeSH ID Detail
Depression, Postpartum D019052 3 associated lipids
Dyskinesias D020820 3 associated lipids
Myocarditis D009205 3 associated lipids
Glaucoma, Open-Angle D005902 3 associated lipids
Neuroaxonal Dystrophies D019150 3 associated lipids
Diabetes Complications D048909 4 associated lipids
Hypercalciuria D053565 4 associated lipids
Intracranial Arteriosclerosis D002537 4 associated lipids
Chondrodysplasia Punctata, Rhizomelic D018902 4 associated lipids
Biliary Atresia D001656 4 associated lipids
Per page 10 20 50 100 | Total 240

PubChem Associated disorders and diseases

What pathways are associated with DHA

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with DHA?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with DHA?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with DHA?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with DHA?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with DHA?

Mouse Model

Mouse Model are used in the study 'Homeostatic regulation of photoreceptor cell integrity: significance of the potent mediator neuroprotectin D1 biosynthesized from docosahexaenoic acid: the Proctor Lecture.' (Bazan NG, 2007), Mouse Model are used in the study 'Omega-3 fatty acids EPA and DHA: health benefits throughout life.' (Swanson D et al., 2012), Mouse Model are used in the study 'Docosahexaenoic acid attenuates hepatic inflammation, oxidative stress, and fibrosis without decreasing hepatosteatosis in a Ldlr(-/-) mouse model of western diet-induced nonalcoholic steatohepatitis.' (Depner CM et al., 2013) and Mouse Model are used in the study 'Wax esters from the marine copepod Calanus finmarchicus reduce diet-induced obesity and obesity-related metabolic disorders in mice.' (Höper AC et al., 2014).

Transgenic Model

Transgenic Model are used in the study 'Loss of MAP function leads to hippocampal synapse loss and deficits in the Morris Water Maze with aging.' (Ma QL et al., 2014).

Animal Disease Models

Animal Disease Models are used in the study 'Fish oil increases muscle protein mass and modulates Akt/FOXO, TLR4, and NOD signaling in weanling piglets after lipopolysaccharide challenge.' (Liu Y et al., 2013).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with DHA

Download all related citations
Per page 10 20 50 100 | Total 7336
Authors Title Published Journal PubMed Link
Cotogni P et al. The Omega-3 Fatty Acid Docosahexaenoic Acid Modulates Inflammatory Mediator Release in Human Alveolar Cells Exposed to Bronchoalveolar Lavage Fluid of ARDS Patients. 2015 Biomed Res Int pmid:26301250
Schwager J et al. ω-3 PUFAs and Resveratrol Differently Modulate Acute and Chronic Inflammatory Processes. 2015 Biomed Res Int pmid:26301248
pmid:26299378
pmid:26298403
pmid:26295255
Stein K et al. A role for 12/15-lipoxygenase-derived proresolving mediators in postoperative ileus: protectin DX-regulated neutrophil extravasation. 2016 J. Leukoc. Biol. pmid:26292977
Lehmann C et al. Lipoxin and resolvin biosynthesis is dependent on 5-lipoxygenase activating protein. 2015 FASEB J. pmid:26289316
pmid:26283657
Mason JK et al. α-linolenic acid and docosahexaenoic acid, alone and combined with trastuzumab, reduce HER2-overexpressing breast cancer cell growth but differentially regulate HER2 signaling pathways. 2015 Lipids Health Dis pmid:26282560
pmid:26282164
pmid:26276744
pmid:26272871
pmid:26272430
Wijendran V et al. Long-chain polyunsaturated fatty acids attenuate the IL-1β-induced proinflammatory response in human fetal intestinal epithelial cells. 2015 Pediatr. Res. pmid:26270575
pmid:26268328
pmid:26268080
pmid:26266774
pmid:26265727
pmid:26264885
pmid:26262896
pmid:26251920
pmid:26249019
pmid:26248129
Valenzuela R et al. Modification of Docosahexaenoic Acid Composition of Milk from Nursing Women Who Received Alpha Linolenic Acid from Chia Oil during Gestation and Nursing. 2015 Nutrients pmid:26247968
pmid:26247960
pmid:26247583
pmid:26247219
pmid:26237736
pmid:26236990
pmid:26234617
pmid:26233644
pmid:26232749
pmid:26231619
Qin Y et al. Fish Oil Supplements Lower Serum Lipids and Glucose in Correlation with a Reduction in Plasma Fibroblast Growth Factor 21 and Prostaglandin E2 in Nonalcoholic Fatty Liver Disease Associated with Hyperlipidemia: A Randomized Clinical Trial. 2015 PLoS ONE pmid:26226139
pmid:26222126
pmid:26219922
pmid:26219414
pmid:26216604
pmid:26209543
pmid:26205910
pmid:26205903
pmid:26205427
pmid:26204250
pmid:26200950
pmid:26196844
Wang Y et al. Maresin 1 Inhibits Epithelial-to-Mesenchymal Transition in Vitro and Attenuates Bleomycin Induced Lung Fibrosis in Vivo. 2015 Shock pmid:26196843
Chiang N et al. Identification of resolvin D2 receptor mediating resolution of infections and organ protection. 2015 J. Exp. Med. pmid:26195725
pmid:26193881
pmid:26193810
pmid:26190023
Herrera BS et al. LXA4 actions direct fibroblast function and wound closure. 2015 Biochem. Biophys. Res. Commun. pmid:26188508
Orban T et al. Serum levels of lipid metabolites in age-related macular degeneration. 2015 FASEB J. pmid:26187344
Marinho GS et al. Lipids and Composition of Fatty Acids of Saccharina latissima Cultivated Year-Round in Integrated Multi-Trophic Aquaculture. 2015 Mar Drugs pmid:26184241
pmid:26182833
Rossi S et al. Interplay between Intravitreal RvD1 and Local Endogenous Sirtuin-1 in the Protection from Endotoxin-Induced Uveitis in Rats. 2015 Mediators Inflamm. pmid:26180376
pmid:26180250
pmid:26178901
pmid:26174765
pmid:26172872
pmid:26169870
pmid:26165764
Hieda K et al. Pharmacological effect of functional foods with a hypotensive action. 2015 Nippon Yakurigaku Zasshi pmid:26165340
pmid:26163453
pmid:26161796
pmid:26161757
pmid:26159746
pmid:26156499
pmid:26151924
pmid:26141815
pmid:26138643
Suo R et al. Generation of Tetracosahexaenoic Acid in Benthic Marine Organisms. 2015 J Oleo Sci pmid:26136172
pmid:26134561
pmid:26132079
pmid:26131715
pmid:26118950
pmid:26118631
pmid:26116581
pmid:26114549
pmid:26108973
pmid:26104043
pmid:26104023
pmid:26102005
pmid:26098476
pmid:26092623
pmid:26091965
pmid:26085822
pmid:26085639
pmid:26081224
pmid:26079889
pmid:26078579
pmid:26078249
pmid:26077874
de Oliveira JR et al. AT-RvD1 modulates CCL-2 and CXCL-8 production and NF-κB, STAT-6, SOCS1, and SOCS3 expression on bronchial epithelial cells stimulated with IL-4. 2015 Biomed Res Int pmid:26075216
pmid:26074314
pmid:26073395
Park HG et al. The fatty acid desaturase 2 (FADS2) gene product catalyzes Δ4 desaturation to yield n-3 docosahexaenoic acid and n-6 docosapentaenoic acid in human cells. 2015 FASEB J. pmid:26065859
pmid:26063691
pmid:26059378
pmid:26059373
pmid:26058862