DHA

Dha is a lipid of Fatty Acyls (FA) class. Dha is associated with abnormalities such as Atherosclerosis, Consumption-archaic term for TB, Chronic disease, Cardiovascular Diseases and Diabetes Mellitus, Non-Insulin-Dependent. The involved functions are known as Inflammation, Oxidation, fatty acid oxidation, Fatty Acid Metabolism and Lipid Metabolism. Dha often locates in Hepatic, Protoplasm, Mucous Membrane, Epithelium and outer membrane. The associated genes with DHA are IMPACT gene, FATE1 gene, GAPDH gene, THOC4 gene and SLC33A1 gene. The related lipids are stearidonic acid, Fatty Acids, Total cholesterol, Lipopolysaccharides and Dietary Fatty Acid. The related experimental models are Mouse Model, Transgenic Model, Animal Disease Models and Arthritis, Experimental.

Cross Reference

Introduction

To understand associated biological information of DHA, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with DHA?

DHA is suspected in Cardiovascular Diseases, Obesity, Ischemia, Hypertensive disease, Coronary Arteriosclerosis, Cerebrovascular accident and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with DHA

MeSH term MeSH ID Detail
Malnutrition D044342 6 associated lipids
Premature Birth D047928 6 associated lipids
Optic Nerve Diseases D009901 6 associated lipids
Peripheral Nerve Injuries D059348 6 associated lipids
Nutrition Disorders D009748 6 associated lipids
Intermittent Claudication D007383 6 associated lipids
Retinitis Pigmentosa D012174 6 associated lipids
Hepatitis C D006526 7 associated lipids
Keratitis D007634 7 associated lipids
Plaque, Atherosclerotic D058226 7 associated lipids
Dyslipidemias D050171 7 associated lipids
Multiple Sclerosis, Relapsing-Remitting D020529 7 associated lipids
Coronary Thrombosis D003328 7 associated lipids
Dementia, Vascular D015140 7 associated lipids
Glomerulonephritis, IGA D005922 7 associated lipids
Infant, Premature, Diseases D007235 7 associated lipids
Eye Abnormalities D005124 7 associated lipids
Peripheral Arterial Disease D058729 7 associated lipids
Sleep Wake Disorders D012893 7 associated lipids
Burkholderia Infections D019121 7 associated lipids
Per page 10 20 50 100 | Total 240

PubChem Associated disorders and diseases

What pathways are associated with DHA

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with DHA?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with DHA?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with DHA?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with DHA?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with DHA?

Mouse Model

Mouse Model are used in the study 'Homeostatic regulation of photoreceptor cell integrity: significance of the potent mediator neuroprotectin D1 biosynthesized from docosahexaenoic acid: the Proctor Lecture.' (Bazan NG, 2007), Mouse Model are used in the study 'Omega-3 fatty acids EPA and DHA: health benefits throughout life.' (Swanson D et al., 2012), Mouse Model are used in the study 'Docosahexaenoic acid attenuates hepatic inflammation, oxidative stress, and fibrosis without decreasing hepatosteatosis in a Ldlr(-/-) mouse model of western diet-induced nonalcoholic steatohepatitis.' (Depner CM et al., 2013) and Mouse Model are used in the study 'Wax esters from the marine copepod Calanus finmarchicus reduce diet-induced obesity and obesity-related metabolic disorders in mice.' (Höper AC et al., 2014).

Transgenic Model

Transgenic Model are used in the study 'Loss of MAP function leads to hippocampal synapse loss and deficits in the Morris Water Maze with aging.' (Ma QL et al., 2014).

Animal Disease Models

Animal Disease Models are used in the study 'Fish oil increases muscle protein mass and modulates Akt/FOXO, TLR4, and NOD signaling in weanling piglets after lipopolysaccharide challenge.' (Liu Y et al., 2013).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with DHA

Download all related citations
Per page 10 20 50 100 | Total 7336
Authors Title Published Journal PubMed Link
Harris WS and Schmitt TL Unexpected similarity in RBC DHA and AA levels between bottlenose dolphins and humans. 2014 Feb-Mar Prostaglandins Leukot. Essent. Fatty Acids pmid:24393427
Fernández-González R et al. Decontamination solutions for polychlorinated biphenyls (PCBs) in raw fish oils from environmentally contaminated sea fishes. 2014 Sci. Total Environ. pmid:24095964
Jilkova ZM et al. Adipose tissue-related proteins locally associated with resolution of inflammation in obese mice. 2014 Int J Obes (Lond) pmid:23756677
De Mel D and Suphioglu C Fishy business: effect of omega-3 fatty acids on zinc transporters and free zinc availability in human neuronal cells. 2014 Nutrients pmid:25195602
Tungen JE et al. Synthesis and anti-inflammatory and pro-resolving activities of 22-OH-PD1, a monohydroxylated metabolite of protectin D1. 2014 J. Nat. Prod. pmid:25247845
McCauley LK et al. Cutting edge: Parathyroid hormone facilitates macrophage efferocytosis in bone marrow via proresolving mediators resolvin D1 and resolvin D2. 2014 J. Immunol. pmid:24890726
Serhan CN Pro-resolving lipid mediators are leads for resolution physiology. 2014 Nature pmid:24899309
[Recommendations of the Polish Gynecological Society concerning docosahexaenoic acid supplementation in the prevention of preterm birth]. 2014 Ginekol. Pol. pmid:24834713
Aursnes M et al. Stereoselective synthesis of protectin D1: a potent anti-inflammatory and proresolving lipid mediator. 2014 Org. Biomol. Chem. pmid:24253202
Liu X et al. Amide-type adduct of dopamine - plausible cause of Parkinson diseases. 2014 Subcell. Biochem. pmid:24374917
Wang Q et al. Resolvin D1 stimulates alveolar fluid clearance through alveolar epithelial sodium channel, Na,K-ATPase via ALX/cAMP/PI3K pathway in lipopolysaccharide-induced acute lung injury. 2014 J. Immunol. pmid:24646745
Martorell M et al. Effect of DHA on plasma fatty acid availability and oxidative stress during training season and football exercise. 2014 Food Funct pmid:24955731
Kitessa SM et al. DHA-containing oilseed: a timely solution for the sustainability issues surrounding fish oil sources of the health-benefitting long-chain omega-3 oils. 2014 Nutrients pmid:24858407
Nelson JW et al. ALX/FPR2 receptor for RvD1 is expressed and functional in salivary glands. 2014 Am. J. Physiol., Cell Physiol. pmid:24259417
O'Sullivan A et al. Habitual diets rich in dark-green vegetables are associated with an increased response to ω-3 fatty acid supplementation in Americans of African ancestry. 2014 J. Nutr. pmid:24259553
Cipollina C et al. Dual anti-oxidant and anti-inflammatory actions of the electrophilic cyclooxygenase-2-derived 17-oxo-DHA in lipopolysaccharide- and cigarette smoke-induced inflammation. 2014 Biochim. Biophys. Acta pmid:24594225
Cho Y et al. Colon cancer cell apoptosis is induced by combined exposure to the n-3 fatty acid docosahexaenoic acid and butyrate through promoter methylation. 2014 Exp. Biol. Med. (Maywood) pmid:24495951
Park J et al. Reciprocal modulation of surface expression of annexin A2 in a human umbilical vein endothelial cell-derived cell line by eicosapentaenoic acid and docosahexaenoic acid. 2014 PLoS ONE pmid:24465474
Tang H et al. Protective actions of aspirin-triggered (17R) resolvin D1 and its analogue, 17R-hydroxy-19-para-fluorophenoxy-resolvin D1 methyl ester, in C5a-dependent IgG immune complex-induced inflammation and lung injury. 2014 J. Immunol. pmid:25172497
Zheng MG et al. Cloning, expression and stress-respondent transcription of long-chain acyl-coenzyme A synthetase cDNA gene of Nannochloropsis gaditana and its involvement in the biosynthesis of eicosapentaenoic and decosahexaenoic acids. 2014 Biotechnol. Lett. pmid:24068506