DHA

Dha is a lipid of Fatty Acyls (FA) class. Dha is associated with abnormalities such as Atherosclerosis, Consumption-archaic term for TB, Chronic disease, Cardiovascular Diseases and Diabetes Mellitus, Non-Insulin-Dependent. The involved functions are known as Inflammation, Oxidation, fatty acid oxidation, Fatty Acid Metabolism and Lipid Metabolism. Dha often locates in Hepatic, Protoplasm, Mucous Membrane, Epithelium and outer membrane. The associated genes with DHA are IMPACT gene, FATE1 gene, GAPDH gene, THOC4 gene and SLC33A1 gene. The related lipids are stearidonic acid, Fatty Acids, Total cholesterol, Lipopolysaccharides and Dietary Fatty Acid. The related experimental models are Mouse Model, Transgenic Model, Animal Disease Models and Arthritis, Experimental.

Cross Reference

Introduction

To understand associated biological information of DHA, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with DHA?

DHA is suspected in Cardiovascular Diseases, Obesity, Ischemia, Hypertensive disease, Coronary Arteriosclerosis, Cerebrovascular accident and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with DHA

MeSH term MeSH ID Detail
Hypothyroidism D007037 32 associated lipids
Vision Disorders D014786 10 associated lipids
Melanoma D008545 69 associated lipids
Pain, Postoperative D010149 13 associated lipids
Asthma D001249 52 associated lipids
Kidney Diseases D007674 29 associated lipids
Weight Gain D015430 101 associated lipids
Hypersensitivity, Delayed D006968 43 associated lipids
Glioma D005910 112 associated lipids
Cell Transformation, Neoplastic D002471 126 associated lipids
Hypercholesterolemia D006937 91 associated lipids
Liver Neoplasms, Experimental D008114 46 associated lipids
Bone Diseases, Metabolic D001851 9 associated lipids
Obesity D009765 29 associated lipids
Thrombosis D013927 49 associated lipids
Uterine Neoplasms D014594 18 associated lipids
Peritonitis D010538 38 associated lipids
Proteinuria D011507 30 associated lipids
Adrenoleukodystrophy D000326 29 associated lipids
Refsum Disease D012035 19 associated lipids
Per page 10 20 50 100 | Total 240

PubChem Associated disorders and diseases

What pathways are associated with DHA

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with DHA?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with DHA?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with DHA?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with DHA?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with DHA?

Mouse Model

Mouse Model are used in the study 'Homeostatic regulation of photoreceptor cell integrity: significance of the potent mediator neuroprotectin D1 biosynthesized from docosahexaenoic acid: the Proctor Lecture.' (Bazan NG, 2007), Mouse Model are used in the study 'Omega-3 fatty acids EPA and DHA: health benefits throughout life.' (Swanson D et al., 2012), Mouse Model are used in the study 'Docosahexaenoic acid attenuates hepatic inflammation, oxidative stress, and fibrosis without decreasing hepatosteatosis in a Ldlr(-/-) mouse model of western diet-induced nonalcoholic steatohepatitis.' (Depner CM et al., 2013) and Mouse Model are used in the study 'Wax esters from the marine copepod Calanus finmarchicus reduce diet-induced obesity and obesity-related metabolic disorders in mice.' (Höper AC et al., 2014).

Transgenic Model

Transgenic Model are used in the study 'Loss of MAP function leads to hippocampal synapse loss and deficits in the Morris Water Maze with aging.' (Ma QL et al., 2014).

Animal Disease Models

Animal Disease Models are used in the study 'Fish oil increases muscle protein mass and modulates Akt/FOXO, TLR4, and NOD signaling in weanling piglets after lipopolysaccharide challenge.' (Liu Y et al., 2013).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with DHA

Download all related citations
Per page 10 20 50 100 | Total 7336
Authors Title Published Journal PubMed Link
Carlson SJ et al. The role of the ω-3 fatty acid DHA in the human life cycle. 2013 JPEN J Parenter Enteral Nutr pmid:23192455
Zhang G et al. Epoxy metabolites of docosahexaenoic acid (DHA) inhibit angiogenesis, tumor growth, and metastasis. 2013 Proc. Natl. Acad. Sci. U.S.A. pmid:23553837
Weiss GA et al. High levels of anti-inflammatory and pro-resolving lipid mediators lipoxins and resolvins and declining docosahexaenoic acid levels in human milk during the first month of lactation. 2013 Lipids Health Dis pmid:23767972
Leino O et al. Effects of docosahexaenoic acid and methylmercury on child's brain development due to consumption of fish by Finnish mother during pregnancy: a probabilistic modeling approach. 2013 Food Chem. Toxicol. pmid:21723361
Nobili V et al. The I148M variant of PNPLA3 reduces the response to docosahexaenoic acid in children with non-alcoholic fatty liver disease. 2013 J Med Food pmid:24074360
Dalal JJ et al. Role of omega-3 ethyl ester concentrate in reducing sudden cardiac death following myocardial infarction and in management of hypertriglyceridemia: an Indian consensus statement. 2012 Sep-Oct Indian Heart J pmid:23102390
Baum SJ EPA and DHA: distinct yet essential n-3 fatty acids. 2012 Sep-Oct J Clin Lipidol pmid:23009786
Castro González MI et al. [Renal patient's diet: Can fish be included?]. 2012 Sep-Oct Nutr Hosp pmid:23478696
Block RC et al. The combination of EPA+DHA and low-dose aspirin ingestion reduces platelet function acutely whereas each alone may not in healthy humans. 2012 Oct-Nov Prostaglandins Leukot. Essent. Fatty Acids pmid:23017325
Kartikasari LR et al. Dietary alpha-linolenic acid enhances omega-3 long chain polyunsaturated fatty acid levels in chicken tissues. 2012 Oct-Nov Prostaglandins Leukot. Essent. Fatty Acids pmid:22925778
Ma L et al. Arginyl-glutamine dipeptide or docosahexaenoic acid attenuate hyperoxia-induced lung injury in neonatal mice. 2012 Nov-Dec Nutrition pmid:23044165
Sanz París A et al. [Proposed profile of omega 3 fatty acids in enteral nutrition]. 2012 Nov-Dec Nutr Hosp pmid:23588426
Brown WV From the editor. 2012 Nov-Dec J Clin Lipidol pmid:23312044
Derosa G et al. Effects of n-3 PUFAs on postprandial variation of metalloproteinases, and inflammatory and insulin resistance parameters in dyslipidemic patients: evaluation with euglycemic clamp and oral fat load. 2012 Nov-Dec J Clin Lipidol pmid:23312051
Davidson MH et al. A novel omega-3 free fatty acid formulation has dramatically improved bioavailability during a low-fat diet compared with omega-3-acid ethyl esters: the ECLIPSE (Epanova(®) compared to Lovaza(®) in a pharmacokinetic single-dose evaluation) study. 2012 Nov-Dec J Clin Lipidol pmid:23312053
Abad S and Turon X Valorization of biodiesel derived glycerol as a carbon source to obtain added-value metabolites: Focus on polyunsaturated fatty acids. 2012 May-Jun Biotechnol. Adv. pmid:22261015
An WS et al. Effect of omega-3 fatty acids on the modification of erythrocyte membrane fatty acid content including oleic acid in peritoneal dialysis patients. 2012 Jan-Feb Prostaglandins Leukot. Essent. Fatty Acids pmid:22071008
Jacobson TA et al. Effects of eicosapentaenoic acid and docosahexaenoic acid on low-density lipoprotein cholesterol and other lipids: a review. 2012 Jan-Feb J Clin Lipidol pmid:22264569
Widgerow AD Cellular resolution of inflammation--catabasis. 2012 Jan-Feb Wound Repair Regen pmid:22276585
Kuipers RS et al. Fetal intrauterine whole body linoleic, arachidonic and docosahexaenoic acid contents and accretion rates. 2012 Jan-Feb Prostaglandins Leukot. Essent. Fatty Acids pmid:22115845
Brenna T Tissue-specific LCPUFA accretion in fetal humans. 2012 Jan-Feb Prostaglandins Leukot. Essent. Fatty Acids pmid:22078006
Helmersson-Karlqvist J et al. Enhanced prostaglandin F2α formation in human pregnancy and the effect of increased oily fish intake: results from the Salmon in Pregnancy Study. 2012 Jan-Feb Prostaglandins Leukot. Essent. Fatty Acids pmid:22047909
Kuipers RS et al. Gestational age dependent content, composition and intrauterine accretion rates of fatty acids in fetal white adipose tissue. 2012 Jan-Feb Prostaglandins Leukot. Essent. Fatty Acids pmid:22093549
Petrie JR et al. Metabolic engineering plant seeds with fish oil-like levels of DHA. 2012 PLoS ONE pmid:23145108
Tillman EM et al. Eicosapentaenoic acid and docosahexaenoic acid synergistically attenuate bile acid-induced hepatocellular apoptosis. 2012 JPEN J Parenter Enteral Nutr pmid:22038211
Fasano E et al. DHA induces apoptosis by altering the expression and cellular location of GRP78 in colon cancer cell lines. 2012 Biochim. Biophys. Acta pmid:22898250
Rondanelli M et al. Effects of a diet integration with an oily emulsion of DHA-phospholipids containing melatonin and tryptophan in elderly patients suffering from mild cognitive impairment. 2012 Nutr Neurosci pmid:22334085
Rockett BD et al. Fish oil increases raft size and membrane order of B cells accompanied by differential effects on function. 2012 J. Lipid Res. pmid:22315394
Hjorth E and Freund-Levi Y Immunomodulation of microglia by docosahexaenoic acid and eicosapentaenoic acid. 2012 Curr Opin Clin Nutr Metab Care pmid:22316559
Saito H and Ishikawa S Characteristic of lipids and fatty acid compositions of the neon flying squid, Ommastrephes bartramii. 2012 J Oleo Sci pmid:23018852
Bragt MC and Mensink RP Comparison of the effects of n-3 long chain polyunsaturated fatty acids and fenofibrate on markers of inflammation and vascular function, and on the serum lipoprotein profile in overweight and obese subjects. 2012 Nutr Metab Cardiovasc Dis pmid:21429719
Felbinger TW et al. Supplementation in acute lung injury. 2012 JAMA pmid:22235078
Bistrian BR Supplementation in acute lung injury. 2012 JAMA pmid:22235079
Schmitt D et al. Toxicologic evaluations of DHA-rich algal oil in rats: developmental toxicity study and 3-month dietary toxicity study with an in utero exposure phase. 2012 Food Chem. Toxicol. pmid:22960629
Huang TY et al. A fermentation strategy for producing docosahexaenoic acid in Aurantiochytrium limacinum SR21 and increasing C22:6 proportions in total fatty acid. 2012 Bioresour. Technol. pmid:22929740
Moreno-Indias I et al. The effect of diet and DHA addition on the sensory quality of goat kid meat. 2012 Meat Sci. pmid:21907501
Munro IA and Garg ML Dietary supplementation with n-3 PUFA does not promote weight loss when combined with a very-low-energy diet. 2012 Br. J. Nutr. pmid:22214842
Deike E et al. The effects of fish oil supplementation on markers of inflammation in chronic kidney disease patients. 2012 J Ren Nutr pmid:22285316
Trépanier MO et al. Increases in seizure latencies induced by subcutaneous docosahexaenoic acid are lost at higher doses. 2012 Epilepsy Res. pmid:22285511
Quinn EA and Kuzawa CW A dose-response relationship between fish consumption and human milk DHA content among Filipino women in Cebu City, Philippines. 2012 Acta Paediatr. pmid:22759234
Turk HF et al. Alteration of EGFR spatiotemporal dynamics suppresses signal transduction. 2012 PLoS ONE pmid:22761867
Oblozinský M et al. New pharmaceutical insights related to the pathways of PUFAs. 2012 Ceska Slov Farm pmid:23251954
Turchini GM et al. Jumping on the omega-3 bandwagon: distinguishing the role of long-chain and short-chain omega-3 fatty acids. 2012 Crit Rev Food Sci Nutr pmid:22698270
Passos PP et al. Dopaminergic cell populations of the rat substantia nigra are differentially affected by essential fatty acid dietary restriction over two generations. 2012 J. Chem. Neuroanat. pmid:22687395
Lorenzetti A et al. Improving sperm quality and spermatogenesis through a bioactive marine compound: an experimental study. 2012 Acta Biomed pmid:23393918
Bell S et al. The effect of omega-3 fatty acids on the atherogenic lipoprotein phenotype in patients with nephrotic range proteinuria. 2012 Clin. Nephrol. pmid:22595386
Hajjaji N et al. Tumor and non-tumor tissues differential oxidative stress response to supplemental DHA and chemotherapy in rats. 2012 Cancer Chemother. Pharmacol. pmid:22610354
Njoroge SW et al. DHA and EPA reverse cystic fibrosis-related FA abnormalities by suppressing FA desaturase expression and activity. 2012 J. Lipid Res. pmid:22095831
Calder PC Long-chain fatty acids and inflammation. 2012 Proc Nutr Soc pmid:22369781
Kelley DS and Adkins Y Similarities and differences between the effects of EPA and DHA on markers of atherosclerosis in human subjects. 2012 Proc Nutr Soc pmid:22369859