DHA

Dha is a lipid of Fatty Acyls (FA) class. Dha is associated with abnormalities such as Atherosclerosis, Consumption-archaic term for TB, Chronic disease, Cardiovascular Diseases and Diabetes Mellitus, Non-Insulin-Dependent. The involved functions are known as Inflammation, Oxidation, fatty acid oxidation, Fatty Acid Metabolism and Lipid Metabolism. Dha often locates in Hepatic, Protoplasm, Mucous Membrane, Epithelium and outer membrane. The associated genes with DHA are IMPACT gene, FATE1 gene, GAPDH gene, THOC4 gene and SLC33A1 gene. The related lipids are stearidonic acid, Fatty Acids, Total cholesterol, Lipopolysaccharides and Dietary Fatty Acid. The related experimental models are Mouse Model, Transgenic Model, Animal Disease Models and Arthritis, Experimental.

Cross Reference

Introduction

To understand associated biological information of DHA, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with DHA?

DHA is suspected in Cardiovascular Diseases, Obesity, Ischemia, Hypertensive disease, Coronary Arteriosclerosis, Cerebrovascular accident and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with DHA

MeSH term MeSH ID Detail
Uveitis D014605 14 associated lipids
Polycystic Ovary Syndrome D011085 14 associated lipids
Dyskinesia, Drug-Induced D004409 15 associated lipids
Brain Neoplasms D001932 15 associated lipids
Hyperlipoproteinemias D006951 15 associated lipids
Thymus Neoplasms D013953 15 associated lipids
Cardiomyopathy, Dilated D002311 15 associated lipids
Ventricular Fibrillation D014693 16 associated lipids
Choline Deficiency D002796 16 associated lipids
Pneumonia, Bacterial D018410 16 associated lipids
Blister D001768 16 associated lipids
Vascular Diseases D014652 16 associated lipids
Atrial Fibrillation D001281 16 associated lipids
Peritoneal Neoplasms D010534 16 associated lipids
Brain Infarction D020520 17 associated lipids
Parkinson Disease, Secondary D010302 17 associated lipids
Carcinoma D002277 18 associated lipids
Uterine Neoplasms D014594 18 associated lipids
Down Syndrome D004314 18 associated lipids
Plaque, Amyloid D058225 19 associated lipids
Dermatitis, Atopic D003876 19 associated lipids
Refsum Disease D012035 19 associated lipids
Pregnancy Complications D011248 19 associated lipids
Parkinsonian Disorders D020734 20 associated lipids
Heart Defects, Congenital D006330 20 associated lipids
Myocardial Reperfusion Injury D015428 20 associated lipids
Anemia D000740 21 associated lipids
Cachexia D002100 21 associated lipids
Periodontitis D010518 22 associated lipids
Carcinoma, Lewis Lung D018827 22 associated lipids
Hyperlipoproteinemia Type II D006938 22 associated lipids
Medulloblastoma D008527 22 associated lipids
Hypoxia-Ischemia, Brain D020925 22 associated lipids
Carcinoma 256, Walker D002279 22 associated lipids
Hypersensitivity D006967 22 associated lipids
Erythema D004890 22 associated lipids
Fibrosis D005355 23 associated lipids
Neoplasms, Hormone-Dependent D009376 23 associated lipids
Birth Weight D001724 23 associated lipids
Hypoxia D000860 23 associated lipids
Cholestasis D002779 23 associated lipids
Breast Neoplasms D001943 24 associated lipids
Genetic Predisposition to Disease D020022 24 associated lipids
Pulmonary Fibrosis D011658 24 associated lipids
Cerebrovascular Disorders D002561 25 associated lipids
Leukemia, Lymphocytic, Chronic, B-Cell D015451 25 associated lipids
Leukemia-Lymphoma, Adult T-Cell D015459 25 associated lipids
Niemann-Pick Diseases D009542 25 associated lipids
Pseudomonas Infections D011552 25 associated lipids
Lipid Metabolism, Inborn Errors D008052 26 associated lipids
Per page 10 20 50 100 | Total 240

PubChem Associated disorders and diseases

What pathways are associated with DHA

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with DHA?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with DHA?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with DHA?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with DHA?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with DHA?

Mouse Model

Mouse Model are used in the study 'Homeostatic regulation of photoreceptor cell integrity: significance of the potent mediator neuroprotectin D1 biosynthesized from docosahexaenoic acid: the Proctor Lecture.' (Bazan NG, 2007), Mouse Model are used in the study 'Omega-3 fatty acids EPA and DHA: health benefits throughout life.' (Swanson D et al., 2012), Mouse Model are used in the study 'Docosahexaenoic acid attenuates hepatic inflammation, oxidative stress, and fibrosis without decreasing hepatosteatosis in a Ldlr(-/-) mouse model of western diet-induced nonalcoholic steatohepatitis.' (Depner CM et al., 2013) and Mouse Model are used in the study 'Wax esters from the marine copepod Calanus finmarchicus reduce diet-induced obesity and obesity-related metabolic disorders in mice.' (Höper AC et al., 2014).

Transgenic Model

Transgenic Model are used in the study 'Loss of MAP function leads to hippocampal synapse loss and deficits in the Morris Water Maze with aging.' (Ma QL et al., 2014).

Animal Disease Models

Animal Disease Models are used in the study 'Fish oil increases muscle protein mass and modulates Akt/FOXO, TLR4, and NOD signaling in weanling piglets after lipopolysaccharide challenge.' (Liu Y et al., 2013).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with DHA

Download all related citations
Per page 10 20 50 100 | Total 7336
Authors Title Published Journal PubMed Link
Fleming JA and Kris-Etherton PM The evidence for α-linolenic acid and cardiovascular disease benefits: Comparisons with eicosapentaenoic acid and docosahexaenoic acid. 2014 Adv Nutr pmid:25398754
Gilbert K et al. Resolvin D1, a metabolite of omega-3 polyunsaturated fatty acid, decreases post-myocardial infarct depression. 2014 Mar Drugs pmid:25402828
Bremer AA et al. Fish oil supplementation ameliorates fructose-induced hypertriglyceridemia and insulin resistance in adult male rhesus macaques. 2014 J. Nutr. pmid:24108131
Papanikolaou Y et al. U.S. adults are not meeting recommended levels for fish and omega-3 fatty acid intake: results of an analysis using observational data from NHANES 2003-2008. 2014 Nutr J pmid:24694001
Heemskerk MM et al. Prolonged niacin treatment leads to increased adipose tissue PUFA synthesis and anti-inflammatory lipid and oxylipin plasma profile. 2014 J. Lipid Res. pmid:25320342
Hong SH et al. Docosahexaenoic acid confers enduring neuroprotection in experimental stroke. 2014 J. Neurol. Sci. pmid:24433927
Mulder KA et al. Omega-3 fatty acid deficiency in infants before birth identified using a randomized trial of maternal DHA supplementation in pregnancy. 2014 PLoS ONE pmid:24427279
Portillo-Reyes V et al. Clinical significance of neuropsychological improvement after supplementation with omega-3 in 8-12 years old malnourished Mexican children: a randomized, double-blind, placebo and treatment clinical trial. 2014 Res Dev Disabil pmid:24508294
Purushothaman D et al. Flaxseed oil supplementation alters the expression of inflammatory-related genes in dogs. 2014 Genet. Mol. Res. pmid:25078588
Domenichiello AF et al. Whole body synthesis rates of DHA from α-linolenic acid are greater than brain DHA accretion and uptake rates in adult rats. 2014 J. Lipid Res. pmid:24212299
Sokolov EI et al. [Value of Fatty acids in formation of thrombotic status in patients with ischemic heart disease]. 2014 Kardiologiia pmid:25177882
Aursnes M et al. Total synthesis of the lipid mediator PD1n-3 DPA: configurational assignments and anti-inflammatory and pro-resolving actions. 2014 J. Nat. Prod. pmid:24576195
Nobili V et al. Role of docosahexaenoic acid treatment in improving liver histology in pediatric nonalcoholic fatty liver disease. 2014 PLoS ONE pmid:24505350
Tateishi N et al. Dietary supplementation of arachidonic acid increases arachidonic acid and lipoxin Aâ‚„ contents in colon, but does not affect severity or prostaglandin Eâ‚‚ content in murine colitis model. 2014 Lipids Health Dis pmid:24507383
Liu Y et al. The fish oil ingredient, docosahexaenoic acid, activates cytosolic phospholipase Aâ‚‚ via GPR120 receptor to produce prostaglandin Eâ‚‚ and plays an anti-inflammatory role in macrophages. 2014 Immunology pmid:24673159
Røsjø E et al. Increasing serum levels of vitamin A, D and E are associated with alterations of different inflammation markers in patients with multiple sclerosis. 2014 J. Neuroimmunol. pmid:24713402
Koizumi K et al. Lipid and fatty acids of three edible myctophids, Diaphus watasei, Diaphus suborbitalis, and Benthosema pterotum: high levels of icosapentaenoic and docosahexaenoic acids. 2014 J Oleo Sci pmid:24717543
Kim W et al. Dietary fish oil and DHA down-regulate antigen-activated CD4+ T-cells while promoting the formation of liquid-ordered mesodomains. 2014 Br. J. Nutr. pmid:23962659
Hutchins-Wiese HL et al. High-dose eicosapentaenoic acid and docosahexaenoic acid supplementation reduces bone resorption in postmenopausal breast cancer survivors on aromatase inhibitors: a pilot study. 2014 Nutr Cancer pmid:24274259
Chang D et al. Serum free fatty acids level in senile cataract. 2014 J Am Coll Nutr pmid:25079310
Purcell R et al. High-fat meals rich in EPA plus DHA compared with DHA only have differential effects on postprandial lipemia and plasma 8-isoprostane F2α concentrations relative to a control high-oleic acid meal: a randomized controlled trial. 2014 Am. J. Clin. Nutr. pmid:25099540
Hernández E et al. Prenatal determinants of cord blood total immunoglobulin E levels in Mexican newborns. 2013 Sep-Oct Allergy Asthma Proc pmid:23998234
Harris WS et al. Comparative effects of an acute dose of fish oil on omega-3 fatty acid levels in red blood cells versus plasma: implications for clinical utility. 2013 Sep-Oct J Clin Lipidol pmid:24079284
Tatsuno I et al. Long-term safety and efficacy of TAK-085 in Japanese subjects with hypertriglyceridemia undergoing lifestyle modification: the omega-3 fatty acids randomized long-term (ORL) study. 2013 Nov-Dec J Clin Lipidol pmid:24314359
Igarashi M et al. Kinetics of eicosapentaenoic acid in brain, heart and liver of conscious rats fed a high n-3 PUFA containing diet. 2013 Nov-Dec Prostaglandins Leukot. Essent. Fatty Acids pmid:24209500
Fenton JI et al. Immunomodulation by dietary long chain omega-3 fatty acids and the potential for adverse health outcomes. 2013 Nov-Dec Prostaglandins Leukot. Essent. Fatty Acids pmid:24183073
Docosahexaenoic and arachidonic acid levels in ELBW infants with prolonged exposure to intravenous lipids. 2013 May-Jun Neonatal Netw pmid:23807965
Tatsuno I et al. Efficacy and safety of TAK-085 compared with eicosapentaenoic acid in Japanese subjects with hypertriglyceridemia undergoing lifestyle modification: the omega-3 fatty acids randomized double-blind (ORD) study. 2013 May-Jun J Clin Lipidol pmid:23725919
Nishimura RY et al. Breast milk fatty acid composition of women living far from the coastal area in Brazil. 2013 May-Jun J Pediatr (Rio J) pmid:23669215
Zajdel A et al. Polyunsaturated fatty acids inhibit melanoma cell growth in vitro. 2013 Mar-Apr Acta Pol Pharm pmid:23614295
Bohr S et al. Resolvin D2 prevents secondary thrombosis and necrosis in a mouse burn wound model. 2013 Jan-Feb Wound Repair Regen pmid:23110665
Piñeiro-Corrales G et al. [Role of omega-3 fatty acids in cardiovascular disease prevention]. 2013 Jan-Feb Nutr Hosp pmid:23808424
Mustafa M et al. Resolvin D1 protects periodontal ligament. 2013 Am. J. Physiol., Cell Physiol. pmid:23864609
Mizwicki MT et al. 1α,25-dihydroxyvitamin D3 and resolvin D1 retune the balance between amyloid-β phagocytosis and inflammation in Alzheimer's disease patients. 2013 J. Alzheimers Dis. pmid:23186989
Olson MV et al. Docosahexaenoic acid reduces inflammation and joint destruction in mice with collagen-induced arthritis. 2013 Inflamm. Res. pmid:24008816
Isosapent ethyl (Vascepa) for severe hypertriglyceridemia. 2013 Med Lett Drugs Ther pmid:23836343
Raatz SK et al. Dose-dependent consumption of farmed Atlantic salmon (Salmo salar) increases plasma phospholipid n-3 fatty acids differentially. 2013 J Acad Nutr Diet pmid:23351633
Arem H et al. Omega-3 and omega-6 fatty acid intakes and endometrial cancer risk in a population-based case-control study. 2013 Eur J Nutr pmid:22915050
Mickleborough TD Omega-3 polyunsaturated fatty acids in physical performance optimization. 2013 Int J Sport Nutr Exerc Metab pmid:23400626
Xu MX et al. Resolvin D1, an endogenous lipid mediator for inactivation of inflammation-related signaling pathways in microglial cells, prevents lipopolysaccharide-induced inflammatory responses. 2013 CNS Neurosci Ther pmid:23521911
Mocellin MC et al. Fish oil decreases C-reactive protein/albumin ratio improving nutritional prognosis and plasma fatty acid profile in colorectal cancer patients. 2013 Lipids pmid:23888317
Parletta N et al. Effects of fish oil supplementation on learning and behaviour of children from Australian Indigenous remote community schools: a randomised controlled trial. 2013 Prostaglandins Leukot. Essent. Fatty Acids pmid:23756346
Berger H et al. SOCS3 transactivation by PPARγ prevents IL-17-driven cancer growth. 2013 Cancer Res. pmid:23619236
Adler EM Of fish oil, rafts, and scrambling things up. 2013 J. Gen. Physiol. pmid:24277599
Tabbaa M et al. Docosahexaenoic acid, inflammation, and bacterial dysbiosis in relation to periodontal disease, inflammatory bowel disease, and the metabolic syndrome. 2013 Nutrients pmid:23966110
Rincón Cervera MÁ et al. Acyl migration evaluation in monoacylglycerols from Echium plantagineum seed oil and Marinol. 2013 J. Biosci. Bioeng. pmid:23287502
Nikolakopoulou Z et al. Omega-3 polyunsaturated fatty acids selectively inhibit growth in neoplastic oral keratinocytes by differentially activating ERK1/2. 2013 Carcinogenesis pmid:23892603
Barbadoro P et al. Fish oil supplementation reduces cortisol basal levels and perceived stress: a randomized, placebo-controlled trial in abstinent alcoholics. 2013 Mol Nutr Food Res pmid:23390041
Delplanque B et al. A dairy fat matrix providing alpha-linolenic acid (ALA) is better than a vegetable fat mixture to increase brain DHA accretion in young rats. 2013 Prostaglandins Leukot. Essent. Fatty Acids pmid:22884780
Li Y et al. Plasticity of leukocytic exudates in resolving acute inflammation is regulated by MicroRNA and proresolving mediators. 2013 Immunity pmid:24238341