DHA

Dha is a lipid of Fatty Acyls (FA) class. Dha is associated with abnormalities such as Atherosclerosis, Consumption-archaic term for TB, Chronic disease, Cardiovascular Diseases and Diabetes Mellitus, Non-Insulin-Dependent. The involved functions are known as Inflammation, Oxidation, fatty acid oxidation, Fatty Acid Metabolism and Lipid Metabolism. Dha often locates in Hepatic, Protoplasm, Mucous Membrane, Epithelium and outer membrane. The associated genes with DHA are IMPACT gene, FATE1 gene, GAPDH gene, THOC4 gene and SLC33A1 gene. The related lipids are stearidonic acid, Fatty Acids, Total cholesterol, Lipopolysaccharides and Dietary Fatty Acid. The related experimental models are Mouse Model, Transgenic Model, Animal Disease Models and Arthritis, Experimental.

Cross Reference

Introduction

To understand associated biological information of DHA, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with DHA?

DHA is suspected in Cardiovascular Diseases, Obesity, Ischemia, Hypertensive disease, Coronary Arteriosclerosis, Cerebrovascular accident and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with DHA

MeSH term MeSH ID Detail
Colonic Neoplasms D003110 161 associated lipids
Diabetes Mellitus, Type 1 D003922 56 associated lipids
Diabetes Mellitus, Type 2 D003924 87 associated lipids
Diabetic Retinopathy D003930 39 associated lipids
Fatty Liver D005234 48 associated lipids
Cataract D002386 34 associated lipids
Diabetes Mellitus, Experimental D003921 85 associated lipids
Mammary Neoplasms, Experimental D008325 67 associated lipids
Body Weight D001835 333 associated lipids
Edema D004487 152 associated lipids
Per page 10 20 50 100 | Total 240

PubChem Associated disorders and diseases

What pathways are associated with DHA

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with DHA?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with DHA?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with DHA?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with DHA?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with DHA?

Mouse Model

Mouse Model are used in the study 'Homeostatic regulation of photoreceptor cell integrity: significance of the potent mediator neuroprotectin D1 biosynthesized from docosahexaenoic acid: the Proctor Lecture.' (Bazan NG, 2007), Mouse Model are used in the study 'Omega-3 fatty acids EPA and DHA: health benefits throughout life.' (Swanson D et al., 2012), Mouse Model are used in the study 'Docosahexaenoic acid attenuates hepatic inflammation, oxidative stress, and fibrosis without decreasing hepatosteatosis in a Ldlr(-/-) mouse model of western diet-induced nonalcoholic steatohepatitis.' (Depner CM et al., 2013) and Mouse Model are used in the study 'Wax esters from the marine copepod Calanus finmarchicus reduce diet-induced obesity and obesity-related metabolic disorders in mice.' (Höper AC et al., 2014).

Transgenic Model

Transgenic Model are used in the study 'Loss of MAP function leads to hippocampal synapse loss and deficits in the Morris Water Maze with aging.' (Ma QL et al., 2014).

Animal Disease Models

Animal Disease Models are used in the study 'Fish oil increases muscle protein mass and modulates Akt/FOXO, TLR4, and NOD signaling in weanling piglets after lipopolysaccharide challenge.' (Liu Y et al., 2013).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with DHA

Download all related citations
Per page 10 20 50 100 | Total 7336
Authors Title Published Journal PubMed Link
Li H et al. Production of sophorolipids with eicosapentaenoic acid and docosahexaenoic acid from Wickerhamiella domercqiae var. sophorolipid using fish oil as a hydrophobic carbon source. 2013 Biotechnol. Lett. pmid:23386226
Wang TM et al. Docosahexaenoic acid and eicosapentaenoic acid reduce C-reactive protein expression and STAT3 activation in IL-6-treated HepG2 cells. 2013 Mol. Cell. Biochem. pmid:23361365
Suganuma H et al. Effect of hypoxic-ischemic insults on the composition of fatty acids in the brain of neonatal rats. 2013 Ann. Nutr. Metab. pmid:23364132
Offman E et al. Steady-state bioavailability of prescription omega-3 on a low-fat diet is significantly improved with a free fatty acid formulation compared with an ethyl ester formulation: the ECLIPSE II study. 2013 Vasc Health Risk Manag pmid:24124374
Mirza M et al. Progressive retinal degeneration and glial activation in the CLN6 (nclf) mouse model of neuronal ceroid lipofuscinosis: a beneficial effect of DHA and curcumin supplementation. 2013 PLoS ONE pmid:24124525
Daak AA et al. Docosahexaenoic and eicosapentaenoic acid supplementation does not exacerbate oxidative stress or intravascular haemolysis in homozygous sickle cell patients. 2013 Prostaglandins Leukot. Essent. Fatty Acids pmid:24095588
Faber J et al. Rapid EPA and DHA incorporation and reduced PGE2 levels after one week intervention with a medical food in cancer patients receiving radiotherapy, a randomized trial. 2013 Clin Nutr pmid:23123043
Hsiao HM et al. A novel anti-inflammatory and pro-resolving role for resolvin D1 in acute cigarette smoke-induced lung inflammation. 2013 PLoS ONE pmid:23484005
Hoshi T et al. Omega-3 fatty acids lower blood pressure by directly activating large-conductance Ca²⁺-dependent K⁺ channels. 2013 Proc. Natl. Acad. Sci. U.S.A. pmid:23487785
Hoshi T et al. Mechanism of the modulation of BK potassium channel complexes with different auxiliary subunit compositions by the omega-3 fatty acid DHA. 2013 Proc. Natl. Acad. Sci. U.S.A. pmid:23487786
Poudyal H et al. Effects of ALA, EPA and DHA in high-carbohydrate, high-fat diet-induced metabolic syndrome in rats. 2013 J. Nutr. Biochem. pmid:23026492
Izquierdo MS et al. Effects of dietary DHA and α-tocopherol on bone development, early mineralisation and oxidative stress in Sparus aurata (Linnaeus, 1758) larvae. 2013 Br. J. Nutr. pmid:23046500
Snodgrass RG et al. Inflammasome-mediated secretion of IL-1β in human monocytes through TLR2 activation; modulation by dietary fatty acids. 2013 J. Immunol. pmid:24043885
Fahrmann JF and Hardman WE Omega 3 fatty acids increase the chemo-sensitivity of B-CLL-derived cell lines EHEB and MEC-2 and of B-PLL-derived cell line JVM-2 to anti-cancer drugs doxorubicin, vincristine and fludarabine. 2013 Lipids Health Dis pmid:23497075
Moate PJ et al. Effects of feeding algal meal high in docosahexaenoic acid on feed intake, milk production, and methane emissions in dairy cows. 2013 J. Dairy Sci. pmid:23498011
Ajami M et al. Effect of DHA+EPA on oxidative stress and apoptosis induced by ischemia-reperfusion in rat kidneys. 2013 Fundam Clin Pharmacol pmid:22943605
Ruiz-Lopez N et al. Reconstitution of EPA and DHA biosynthesis in arabidopsis: iterative metabolic engineering for the synthesis of n-3 LC-PUFAs in transgenic plants. 2013 Metab. Eng. pmid:23500000
Weise C et al. Dietary polyunsaturated fatty acids and non-digestible oligosaccharides reduce dermatitis in mice. 2013 Pediatr Allergy Immunol pmid:23577592
De Genaro P et al. Retinoic acid promotes apoptosis and differentiation in photoreceptors by activating the P38 MAP kinase pathway. 2013 Invest. Ophthalmol. Vis. Sci. pmid:23580485
Hudson AG et al. Erythrocyte omega-6 and omega-3 fatty acids and mammographic breast density. 2013 Nutr Cancer pmid:23530640
Safarinejad MR et al. Effects of EPA, γ-linolenic acid or coenzyme Q10 on serum prostate-specific antigen levels: a randomised, double-blind trial. 2013 Br. J. Nutr. pmid:23199523
Chen J et al. Docosahexaenoic acid (DHA) ameliorates paraquat-induced pulmonary fibrosis in rats possibly through up-regulation of Smad 7 and SnoN. 2013 Food Chem. Toxicol. pmid:23590892
Damsgaard CT et al. n-3 PUFA status in school children is associated with beneficial lipid profile, reduced physical activity and increased blood pressure in boys. 2013 Br. J. Nutr. pmid:23591057
Zhang X et al. Resolvin D1 protects podocytes in adriamycin-induced nephropathy through modulation of 14-3-3β acetylation. 2013 PLoS ONE pmid:23840712
Shin S et al. The omega-3 polyunsaturated fatty acid DHA induces simultaneous apoptosis and autophagy via mitochondrial ROS-mediated Akt-mTOR signaling in prostate cancer cells expressing mutant p53. 2013 Biomed Res Int pmid:23841076
Baillie JK and Digard P Influenza--time to target the host? 2013 N. Engl. J. Med. pmid:23841736
Dalli J et al. Novel n-3 immunoresolvents: structures and actions. 2013 Sci Rep pmid:23736886
Shiraishi M et al. Estimation of eicosapentaenoic acid and docosahexaenoic acid intakes in pregnant Japanese women without nausea by using a self-administered diet history questionnaire. 2013 Nutr Res pmid:23746563
Azordegan N et al. Carcinogenesis alters fatty acid profile in breast tissue. 2013 Mol. Cell. Biochem. pmid:23180247
Thomas J et al. Dietary supplementation with resveratrol and/or docosahexaenoic acid alters hippocampal gene expression in adult C57Bl/6 mice. 2013 J. Nutr. Biochem. pmid:23746933
Brouwer IA et al. Effect of alpha linolenic acid supplementation on serum prostate specific antigen (PSA): results from the alpha omega trial. 2013 PLoS ONE pmid:24349086
Chang G et al. Improvement of docosahexaenoic acid production on glycerol by Schizochytrium sp. S31 with constantly high oxygen transfer coefficient. 2013 Bioresour. Technol. pmid:23747449
Long SJ and Benton D A double-blind trial of the effect of docosahexaenoic acid and vitamin and mineral supplementation on aggression, impulsivity, and stress. 2013 Hum Psychopharmacol pmid:23625531
Das UN Polyunsaturated fatty acids in heart failure. 2013 Circ. J. pmid:23628915
Meyer BJ et al. Assessing long-chain ω-3 polyunsaturated fatty acids: a tailored food-frequency questionnaire is better. 2013 Nutrition pmid:22929186
Collins MA et al. Docosahexaenoic acid (DHA) prevents binge ethanol-dependent aquaporin-4 elevations while inhibiting neurodegeneration: experiments in rat adult-age entorhino-hippocampal slice cultures. 2013 Neurotox Res pmid:23184649
Reinders I et al. Associations of serum n-3 and n-6 polyunsaturated fatty acids with echocardiographic measures among older adults: the Hoorn Study. 2013 Eur J Clin Nutr pmid:24084512
Hutchins-Wiese HL et al. The impact of supplemental n-3 long chain polyunsaturated fatty acids and dietary antioxidants on physical performance in postmenopausal women. 2013 J Nutr Health Aging pmid:23299384
Takayama M et al. Association of marine-origin n-3 polyunsaturated fatty acids consumption and functional mobility in the community-dwelling oldest old. 2013 J Nutr Health Aging pmid:23299385
Lovegrove JA and Griffin BA The acute and long-term effects of dietary fatty acids on vascular function in health and disease. 2013 Curr Opin Clin Nutr Metab Care pmid:23299700
Raza Shaikh S and Brown DA Models of plasma membrane organization can be applied to mitochondrial membranes to target human health and disease with polyunsaturated fatty acids. 2013 Prostaglandins Leukot. Essent. Fatty Acids pmid:22464052
Metherel AH et al. EPA and DHA levels in whole blood decrease more rapidly when stored at -20 °C as compared with room temperature, 4 and -75 °C. 2013 Lipids pmid:23949919
Ishikado A et al. 4-Hydroxy hexenal derived from docosahexaenoic acid protects endothelial cells via Nrf2 activation. 2013 PLoS ONE pmid:23936010
Hoshi T et al. Reply to Harris et al.: Differential impacts of omega-3 fatty acids and their derivatives on blood pressure. 2013 Proc. Natl. Acad. Sci. U.S.A. pmid:23940844
de Oliveira Otto MC et al. Circulating and dietary omega-3 and omega-6 polyunsaturated fatty acids and incidence of CVD in the Multi-Ethnic Study of Atherosclerosis. 2013 J Am Heart Assoc pmid:24351702
Barros KV et al. Supplemental intravenous n-3 fatty acids and n-3 fatty acid status and outcome in critically ill elderly patients in the ICU receiving enteral nutrition. 2013 Clin Nutr pmid:23260750
Ryu BG et al. Use of organic waste from the brewery industry for high-density cultivation of the docosahexaenoic acid-rich microalga, Aurantiochytrium sp. KRS101. 2013 Bioresour. Technol. pmid:23262011
Tam VC Lipidomic profiling of bioactive lipids by mass spectrometry during microbial infections. 2013 Semin. Immunol. pmid:24084369
Fontes-Villalba M et al. African hominin stable isotopic data do not necessarily indicate grass consumption. 2013 Proc. Natl. Acad. Sci. U.S.A. pmid:24062471
Yusof HM et al. Limited impact of 2 g/day omega-3 fatty acid ethyl esters (Omacor®) on plasma lipids and inflammatory markers in patients awaiting carotid endarterectomy. 2013 Mar Drugs pmid:24065166