DHA

Dha is a lipid of Fatty Acyls (FA) class. Dha is associated with abnormalities such as Atherosclerosis, Consumption-archaic term for TB, Chronic disease, Cardiovascular Diseases and Diabetes Mellitus, Non-Insulin-Dependent. The involved functions are known as Inflammation, Oxidation, fatty acid oxidation, Fatty Acid Metabolism and Lipid Metabolism. Dha often locates in Hepatic, Protoplasm, Mucous Membrane, Epithelium and outer membrane. The associated genes with DHA are IMPACT gene, FATE1 gene, GAPDH gene, THOC4 gene and SLC33A1 gene. The related lipids are stearidonic acid, Fatty Acids, Total cholesterol, Lipopolysaccharides and Dietary Fatty Acid. The related experimental models are Mouse Model, Transgenic Model, Animal Disease Models and Arthritis, Experimental.

Cross Reference

Introduction

To understand associated biological information of DHA, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with DHA?

DHA is suspected in Cardiovascular Diseases, Obesity, Ischemia, Hypertensive disease, Coronary Arteriosclerosis, Cerebrovascular accident and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with DHA

MeSH term MeSH ID Detail
Colonic Neoplasms D003110 161 associated lipids
Diabetes Mellitus, Type 1 D003922 56 associated lipids
Diabetes Mellitus, Type 2 D003924 87 associated lipids
Diabetic Retinopathy D003930 39 associated lipids
Fatty Liver D005234 48 associated lipids
Cataract D002386 34 associated lipids
Diabetes Mellitus, Experimental D003921 85 associated lipids
Mammary Neoplasms, Experimental D008325 67 associated lipids
Body Weight D001835 333 associated lipids
Edema D004487 152 associated lipids
Per page 10 20 50 100 | Total 240

PubChem Associated disorders and diseases

What pathways are associated with DHA

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with DHA?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with DHA?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with DHA?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with DHA?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with DHA?

Mouse Model

Mouse Model are used in the study 'Homeostatic regulation of photoreceptor cell integrity: significance of the potent mediator neuroprotectin D1 biosynthesized from docosahexaenoic acid: the Proctor Lecture.' (Bazan NG, 2007), Mouse Model are used in the study 'Omega-3 fatty acids EPA and DHA: health benefits throughout life.' (Swanson D et al., 2012), Mouse Model are used in the study 'Docosahexaenoic acid attenuates hepatic inflammation, oxidative stress, and fibrosis without decreasing hepatosteatosis in a Ldlr(-/-) mouse model of western diet-induced nonalcoholic steatohepatitis.' (Depner CM et al., 2013) and Mouse Model are used in the study 'Wax esters from the marine copepod Calanus finmarchicus reduce diet-induced obesity and obesity-related metabolic disorders in mice.' (Höper AC et al., 2014).

Transgenic Model

Transgenic Model are used in the study 'Loss of MAP function leads to hippocampal synapse loss and deficits in the Morris Water Maze with aging.' (Ma QL et al., 2014).

Animal Disease Models

Animal Disease Models are used in the study 'Fish oil increases muscle protein mass and modulates Akt/FOXO, TLR4, and NOD signaling in weanling piglets after lipopolysaccharide challenge.' (Liu Y et al., 2013).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with DHA

Download all related citations
Per page 10 20 50 100 | Total 7336
Authors Title Published Journal PubMed Link
Sanders TA et al. The influence of a maternal diet rich in linoleic acid on brain and retinal docosahexaenoic acid in the rat. 1984 Br. J. Nutr. pmid:6228249
Onuma Y et al. Selective incorporation of docosahexaenoic acid in rat brain. 1984 Biochim. Biophys. Acta pmid:6231055
Ishii H et al. The effect of plasma on platelet function in hypercholesterolemic rabbits and the changes in fatty acid composition of the plasma. 1984 Thromb. Res. pmid:6234679
Goosey JD et al. A lipid peroxidative mechanism for posterior subcapsular cataract formation in the rabbit: a possible model for cataract formation in tapetoretinal diseases. 1984 Invest. Ophthalmol. Vis. Sci. pmid:6232239
VanRollins M et al. Oxidation of docosahexaenoic acid by rat liver microsomes. 1984 J. Biol. Chem. pmid:6232277
VanRollins M and Murphy RC Autooxidation of docosahexaenoic acid: analysis of ten isomers of hydroxydocosahexaenoate. 1984 J. Lipid Res. pmid:6234372
Harris WS et al. Will dietary omega-3 fatty acids change the composition of human milk? 1984 Am. J. Clin. Nutr. pmid:6237575
Reddy TS et al. Long-chain acyl-coenzyme A synthetase from rat brain microsomes. Kinetic studies using [1-14C]docosahexaenoic acid substrate. 1984 Eur. J. Biochem. pmid:6237910
Bazan NG et al. Docosahexaenoic acid (22:6, n-3) is metabolized to lipoxygenase reaction products in the retina. 1984 Biochem. Biophys. Res. Commun. pmid:6240268
Neuringer M et al. Dietary omega-3 fatty acid deficiency and visual loss in infant rhesus monkeys. 1984 J. Clin. Invest. pmid:6317716
Fogerty AC et al. Liver fatty acids and the sudden infant death syndrome. 1984 Am. J. Clin. Nutr. pmid:6230001
Fischer S et al. Uptake, release and metabolism of docosahexaenoic acid (DHA, c22:6 omega 3) in human platelets and neutrophils. 1984 Biochem. Biophys. Res. Commun. pmid:6329189
Aveldaño MI and Sprecher H Synthesis of hydroxy fatty acids from 4, 7, 10, 13, 16, 19-[1-14C] docosahexaenoic acid by human platelets. 1983 J. Biol. Chem. pmid:6223928
Rao GH et al. Effect of docosahexaenoic acid (DHA) on arachidonic acid metabolism and platelet function. 1983 Biochem. Biophys. Res. Commun. pmid:6229254
Sanders TA and Roshanai F The influence of different types of omega 3 polyunsaturated fatty acids on blood lipids and platelet function in healthy volunteers. 1983 Clin. Sci. pmid:6295686
Corey EJ et al. Docosahexaenoic acid is a strong inhibitor of prostaglandin but not leukotriene biosynthesis. 1983 Proc. Natl. Acad. Sci. U.S.A. pmid:6304720
Morisaki N et al. In vivo effects of cis-5,8,11,14,17-20:5 (n-3) and cis-4,7,10,13,16,19-22:6(n-3) on serum lipoproteins, platelet aggregation, and lipid metabolism in the aorta of rats. 1983 Tohoku J. Exp. Med. pmid:6322383
De Schrijver R and Privett OS Effects of dietary long-chain fatty acids on the rat biosynthesis of unsaturated fatty acids in the rat. 1982 J. Nutr. pmid:6279803
Nagai M et al. The fatty acid levels of rat alpha-fetoprotein derived from fetuses, pregnancy and hepatoma sera. 1982 Oncodev. Biol. Med. pmid:6183647
Guffy MM et al. Effect of cellular fatty acid alteration on hyperthermic sensitivity in cultured L1210 murine leukemia cells. 1982 Cancer Res. pmid:6213296
Talesnik J and Hsia JC Coronary flow reactions to arachidonic acid are inhibited by docosahexaenoic acid. 1982 Eur. J. Pharmacol. pmid:6213418
Mooibroek J et al. Comparison of the radiosensitivity of unsaturated fatty acids, structured as micelles or liposomes, under different experimental conditions. 1982 Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. pmid:6219072
Bazan NG Metabolism of phospholipids in the retina. 1982 Vision Res. pmid:6305026
Armstrong D et al. Studies on experimentally induced retinal degeneration. 1. Effect of lipid peroxides on electroretinographic activity in the albino rabbit. 1982 Exp. Eye Res. pmid:7151884
Bazan NG et al. High content of 22:6 (docosahexaenoate) and active [2-3H]glycerol metabolism of phosphatidic acid from photoreceptor membranes. 1982 Biochim. Biophys. Acta pmid:6215065
Organisciak DT et al. Rod outer segment lipid--opsin ratios in the developing normal and retinal dystrophic rat. 1982 Exp. Eye Res. pmid:6461559
Studies of docosahexaenoic and eicosapentaenoic acids in trout and frogs. 1982 Nutr. Rev. pmid:6289203
Nissen HP et al. [Significance of bound fatty acids in human sperm in fertility disorders]. 1981 Sep-Oct Andrologia pmid:6459043
Boeynaems JM et al. Iodination of docosahexaenoic acid by lactoperoxidase and thyroid gland in vitro: formation of an lodolactone. 1981 Lipids pmid:6153054
Sanders TA et al. Effect on blood lipids and haemostasis of a supplement of cod-liver oil, rich in eicosapentaenoic and docosahexaenoic acids, in healthy young men. 1981 Clin. Sci. pmid:6266735
Mai J et al. A new prostaglandin, C22-PGF4 alpha, synthesized from docosahexaenoic acid (C22:6n3) by trout gill. 1981 Prostaglandins pmid:6280241
Hsia JC et al. alpha-fetoprotein binding specificity for arachidonate, bilirubin, docosahexaenoate, and palmitate. A spin label study. 1980 J. Biol. Chem. pmid:6154708
Iritani N et al. Identification of shellfish fatty acids and their effects on lipogenic enzymes. 1980 Biochim. Biophys. Acta pmid:6104986
Castledine AJ and Buckley JT Distribution and mobility of omega 3 fatty acids in rainbow trout fed varying levels and types of dietary lipid. 1980 J. Nutr. pmid:6445002
Giesing M and Zilliken F Lipid metabolism of developing central nervous tissues in organotypic cultures. III. Ganglionic control of glycerolipids and fatty acids in cortex grey matter. 1980 Neurochem. Res. pmid:6445512
Sanders TA and Naismith DJ The metabolism of alpha-linolenic acid by the foetal rat. 1980 Br. J. Nutr. pmid:6448628
NOBLE RC and MOORE JH FURTHER STUDIES ON THE LIPID METABOLISM OF THE NORMAL AND VITAMIN B-12 DEFICIENT CHICK EMBRYO. 1965 Biochem. J. pmid:14333549
pmid:12794672
pmid:19505812
pmid:22019217
Brown WV et al. Using omega-3 fatty acids in the practice of clinical lipidology. J Clin Lipidol pmid:22108145
pmid:
pmid:25911196
pmid:25908532
pmid:26709472
pmid:24929111
pmid:24928794
pmid:27600795
pmid:28410665
pmid:23100268
pmid:26169870
pmid:26642316
pmid:28481011
pmid:27527148
pmid:28918747
pmid:26576657
pmid:25787990
pmid:24729481
pmid:28610917
pmid:27398790
pmid:25716968
pmid:26506380
pmid:26501267
pmid:24613294
pmid:24613086
pmid:28807874
pmid:25471800
pmid:27213448
pmid:25529879
pmid:28316988
pmid:24299019
pmid:26350999
pmid:27105870
pmid:25865679
pmid:28212859
pmid:28104914
pmid:26315048
pmid:23095185
pmid:27041074
pmid:27038174
pmid:20873863
pmid:28107189
pmid:26247219
pmid:27692015
pmid:25355484
pmid:26988493
pmid:27998778
pmid:26432509
pmid:26172872
pmid:25236196
pmid:26907333
pmid:27909869
pmid:26077874
pmid:26830728
pmid:27803479
pmid:27683871
pmid:25997493
pmid:27720041
pmid:26780261
pmid:25017107