DHA

Dha is a lipid of Fatty Acyls (FA) class. Dha is associated with abnormalities such as Atherosclerosis, Consumption-archaic term for TB, Chronic disease, Cardiovascular Diseases and Diabetes Mellitus, Non-Insulin-Dependent. The involved functions are known as Inflammation, Oxidation, fatty acid oxidation, Fatty Acid Metabolism and Lipid Metabolism. Dha often locates in Hepatic, Protoplasm, Mucous Membrane, Epithelium and outer membrane. The associated genes with DHA are IMPACT gene, FATE1 gene, GAPDH gene, THOC4 gene and SLC33A1 gene. The related lipids are stearidonic acid, Fatty Acids, Total cholesterol, Lipopolysaccharides and Dietary Fatty Acid. The related experimental models are Mouse Model, Transgenic Model, Animal Disease Models and Arthritis, Experimental.

Cross Reference

Introduction

To understand associated biological information of DHA, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with DHA?

DHA is suspected in Cardiovascular Diseases, Obesity, Ischemia, Hypertensive disease, Coronary Arteriosclerosis, Cerebrovascular accident and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with DHA

MeSH term MeSH ID Detail
Colonic Neoplasms D003110 161 associated lipids
Diabetes Mellitus, Type 1 D003922 56 associated lipids
Diabetes Mellitus, Type 2 D003924 87 associated lipids
Diabetic Retinopathy D003930 39 associated lipids
Fatty Liver D005234 48 associated lipids
Cataract D002386 34 associated lipids
Diabetes Mellitus, Experimental D003921 85 associated lipids
Mammary Neoplasms, Experimental D008325 67 associated lipids
Body Weight D001835 333 associated lipids
Edema D004487 152 associated lipids
Per page 10 20 50 100 | Total 240

PubChem Associated disorders and diseases

What pathways are associated with DHA

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with DHA?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with DHA?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with DHA?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with DHA?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with DHA?

Mouse Model

Mouse Model are used in the study 'Homeostatic regulation of photoreceptor cell integrity: significance of the potent mediator neuroprotectin D1 biosynthesized from docosahexaenoic acid: the Proctor Lecture.' (Bazan NG, 2007), Mouse Model are used in the study 'Omega-3 fatty acids EPA and DHA: health benefits throughout life.' (Swanson D et al., 2012), Mouse Model are used in the study 'Docosahexaenoic acid attenuates hepatic inflammation, oxidative stress, and fibrosis without decreasing hepatosteatosis in a Ldlr(-/-) mouse model of western diet-induced nonalcoholic steatohepatitis.' (Depner CM et al., 2013) and Mouse Model are used in the study 'Wax esters from the marine copepod Calanus finmarchicus reduce diet-induced obesity and obesity-related metabolic disorders in mice.' (Höper AC et al., 2014).

Transgenic Model

Transgenic Model are used in the study 'Loss of MAP function leads to hippocampal synapse loss and deficits in the Morris Water Maze with aging.' (Ma QL et al., 2014).

Animal Disease Models

Animal Disease Models are used in the study 'Fish oil increases muscle protein mass and modulates Akt/FOXO, TLR4, and NOD signaling in weanling piglets after lipopolysaccharide challenge.' (Liu Y et al., 2013).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with DHA

Download all related citations
Per page 10 20 50 100 | Total 7336
Authors Title Published Journal PubMed Link
pmid:27559094
Wilding TJ et al. Chimeric Glutamate Receptor Subunits Reveal the Transmembrane Domain Is Sufficient for NMDA Receptor Pore Properties but Some Positive Allosteric Modulators Require Additional Domains. 2016 J. Neurosci. pmid:27559165
pmid:27565090
pmid:27566736
Wechsler JG et al. [Effect of omega-3-fatty acids on biliary lipids and lithogenicity]. 1989 Z Gastroenterol pmid:2756729
pmid:27571269
pmid:27571688
pmid:27573422
pmid:27576529
pmid:27578106
pmid:27578110
pmid:27579313
pmid:27589090
Meesawatsom P et al. Inhibitory effects of aspirin-triggered resolvin D1 on spinal nociceptive processing in rat pain models. 2016 J Neuroinflammation pmid:27589850
pmid:27592363
pmid:27594339
pmid:27594375
pmid:27596393
pmid:27597963
pmid:27598198
pmid:27600795
pmid:27600927
pmid:27603970
pmid:27604086
pmid:27604770
pmid:27609281
pmid:27613620
pmid:27613800
pmid:27614801
pmid:27618287
pmid:27619672
Luo B et al. Resolvin D1 Programs Inflammation Resolution by Increasing TGF-β Expression Induced by Dying Cell Clearance in Experimental Autoimmune Neuritis. 2016 J. Neurosci. pmid:27629711
pmid:27632672
Devassy JG et al. Omega-3 Polyunsaturated Fatty Acids and Oxylipins in Neuroinflammation and Management of Alzheimer Disease. 2016 Adv Nutr pmid:27633106
pmid:27634339
pmid:27637335
pmid:27637338
pmid:27637340
Yoshida S et al. Treatment with DHA/EPA ameliorates atopic dermatitis-like skin disease by blocking LTB4 production. 2016 J. Med. Invest. pmid:27644556
pmid:27647308
Titos E et al. Signaling and Immunoresolving Actions of Resolvin D1 in Inflamed Human Visceral Adipose Tissue. 2016 J. Immunol. pmid:27647830
pmid:27649078
pmid:27650250
pmid:27650941
pmid:27653190
pmid:27660991
pmid:27663185
pmid:27682409
pmid:27683871
Crandell JR et al. Lipid effects of switching from prescription EPA+DHA (omega-3-acid ethyl esters) to prescription EPA only (icosapent ethyl) in dyslipidemic patients. 2016 Postgrad Med pmid:27684412
pmid:27685803
pmid:27690699
pmid:27692015
Easley JT et al. AT-RvD1 combined with DEX is highly effective in treating TNF-α-mediated disruption of the salivary gland epithelium. 2016 Physiol Rep pmid:27694530
pmid:27698953
pmid:27701160
pmid:27702480
pmid:27704276
Primdahl KG et al. Synthesis of 13(R)-Hydroxy-7Z,10Z,13R,14E,16Z,19Z Docosapentaenoic Acid (13R-HDPA) and Its Biosynthetic Conversion to the 13-Series Resolvins. 2016 J. Nat. Prod. pmid:27704804
pmid:27707818
pmid:27710160
pmid:27714669
pmid:27716665
Mason RP et al. Eicosapentaenoic acid reduces membrane fluidity, inhibits cholesterol domain formation, and normalizes bilayer width in atherosclerotic-like model membranes. 2016 Biochim. Biophys. Acta pmid:27718370
pmid:27720035
pmid:27720039
pmid:27720040
pmid:27720041
Gharekhani A et al. Potential Effects of Omega-3 Fatty Acids on Insulin Resistance and Lipid Profile in Maintenance Hemodialysis Patients: a Randomized Placebo-Controlled Trial. 2016 Iran J Kidney Dis pmid:27721230
pmid:27733252
pmid:27735833
pmid:27735847
pmid:27744130
pmid:27765247
pmid:27767993
Marin R et al. Anomalies occurring in lipid profiles and protein distribution in frontal cortex lipid rafts in dementia with Lewy bodies disclose neurochemical traits partially shared by Alzheimer's and Parkinson's diseases. 2017 Neurobiol. Aging pmid:27768960
pmid:27768981
pmid:27777380
pmid:27785012
pmid:27787443
pmid:27787894
pmid:27788314
pmid:27788427
pmid:27789386
pmid:27790978
pmid:27791009
pmid:27792396
pmid:27799313
pmid:27800648
pmid:27803479
pmid:27804268
pmid:27806350
pmid:27806659
pmid:27813426
pmid:27822319
Nagai T et al. Circulating Omega-6, But Not Omega-3 Polyunsaturated Fatty Acids, Are Associated with Clinical Outcomes in Patients with Acute Decompensated Heart Failure. 2016 PLoS ONE pmid:27824904
pmid:27825512
pmid:27825781
pmid:27826078
pmid:27827947