DHA

Dha is a lipid of Fatty Acyls (FA) class. Dha is associated with abnormalities such as Atherosclerosis, Consumption-archaic term for TB, Chronic disease, Cardiovascular Diseases and Diabetes Mellitus, Non-Insulin-Dependent. The involved functions are known as Inflammation, Oxidation, fatty acid oxidation, Fatty Acid Metabolism and Lipid Metabolism. Dha often locates in Hepatic, Protoplasm, Mucous Membrane, Epithelium and outer membrane. The associated genes with DHA are IMPACT gene, FATE1 gene, GAPDH gene, THOC4 gene and SLC33A1 gene. The related lipids are stearidonic acid, Fatty Acids, Total cholesterol, Lipopolysaccharides and Dietary Fatty Acid. The related experimental models are Mouse Model, Transgenic Model, Animal Disease Models and Arthritis, Experimental.

Cross Reference

Introduction

To understand associated biological information of DHA, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with DHA?

DHA is suspected in Cardiovascular Diseases, Obesity, Ischemia, Hypertensive disease, Coronary Arteriosclerosis, Cerebrovascular accident and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with DHA

MeSH term MeSH ID Detail
Alzheimer Disease D000544 76 associated lipids
Arteriosclerosis D001161 86 associated lipids
Leukemia D007938 74 associated lipids
Magnesium Deficiency D008275 9 associated lipids
Neuroblastoma D009447 66 associated lipids
Carcinoma, Hepatocellular D006528 140 associated lipids
Liver Cirrhosis D008103 67 associated lipids
Colorectal Neoplasms D015179 10 associated lipids
Optic Nerve Diseases D009901 6 associated lipids
Cholestasis D002779 23 associated lipids
Fibrosis D005355 23 associated lipids
Anemia, Sickle Cell D000755 34 associated lipids
Lipid Metabolism, Inborn Errors D008052 26 associated lipids
Glomerulonephritis D005921 35 associated lipids
Sepsis D018805 11 associated lipids
Acquired Immunodeficiency Syndrome D000163 12 associated lipids
Psoriasis D011565 47 associated lipids
Pseudomonas Infections D011552 25 associated lipids
Brain Infarction D020520 17 associated lipids
Infarction, Middle Cerebral Artery D020244 35 associated lipids
Per page 10 20 50 100 | Total 240

PubChem Associated disorders and diseases

What pathways are associated with DHA

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with DHA?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with DHA?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with DHA?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with DHA?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with DHA?

Mouse Model

Mouse Model are used in the study 'Homeostatic regulation of photoreceptor cell integrity: significance of the potent mediator neuroprotectin D1 biosynthesized from docosahexaenoic acid: the Proctor Lecture.' (Bazan NG, 2007), Mouse Model are used in the study 'Omega-3 fatty acids EPA and DHA: health benefits throughout life.' (Swanson D et al., 2012), Mouse Model are used in the study 'Docosahexaenoic acid attenuates hepatic inflammation, oxidative stress, and fibrosis without decreasing hepatosteatosis in a Ldlr(-/-) mouse model of western diet-induced nonalcoholic steatohepatitis.' (Depner CM et al., 2013) and Mouse Model are used in the study 'Wax esters from the marine copepod Calanus finmarchicus reduce diet-induced obesity and obesity-related metabolic disorders in mice.' (Höper AC et al., 2014).

Transgenic Model

Transgenic Model are used in the study 'Loss of MAP function leads to hippocampal synapse loss and deficits in the Morris Water Maze with aging.' (Ma QL et al., 2014).

Animal Disease Models

Animal Disease Models are used in the study 'Fish oil increases muscle protein mass and modulates Akt/FOXO, TLR4, and NOD signaling in weanling piglets after lipopolysaccharide challenge.' (Liu Y et al., 2013).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with DHA

Download all related citations
Per page 10 20 50 100 | Total 7336
Authors Title Published Journal PubMed Link
Mirza M et al. Progressive retinal degeneration and glial activation in the CLN6 (nclf) mouse model of neuronal ceroid lipofuscinosis: a beneficial effect of DHA and curcumin supplementation. 2013 PLoS ONE pmid:24124525
Umhau JC et al. Brain docosahexaenoic acid [DHA] incorporation and blood flow are increased in chronic alcoholics: a positron emission tomography study corrected for cerebral atrophy. 2013 PLoS ONE pmid:24098376
Petrie JR et al. Metabolic engineering plant seeds with fish oil-like levels of DHA. 2012 PLoS ONE pmid:23145108
Wang X et al. The effect of insulin, TNFα and DHA on the proliferation, differentiation and lipolysis of preadipocytes isolated from large yellow croaker (Pseudosciaena Crocea R.). 2012 PLoS ONE pmid:23110176
Sugasini D and Subbaiah PV Rate of acyl migration in lysophosphatidylcholine (LPC) is dependent upon the nature of the acyl group. Greater stability of sn-2 docosahexaenoyl LPC compared to the more saturated LPC species. 2017 PLoS ONE pmid:29117232
Zhu G et al. Enhanced production of docosahexaenoic acid in mammalian cells. 2014 PLoS ONE pmid:24788769
Martin CR et al. Resolvin D1 and lipoxin A4 improve alveolarization and normalize septal wall thickness in a neonatal murine model of hyperoxia-induced lung injury. 2014 PLoS ONE pmid:24892762
Nakamoto K et al. Dysfunctional GPR40/FFAR1 signaling exacerbates pain behavior in mice. 2017 PLoS ONE pmid:28723961
Nagai T et al. Circulating Omega-6, But Not Omega-3 Polyunsaturated Fatty Acids, Are Associated with Clinical Outcomes in Patients with Acute Decompensated Heart Failure. 2016 PLoS ONE pmid:27824904
Xue B et al. Omega-3 polyunsaturated fatty acids antagonize macrophage inflammation via activation of AMPK/SIRT1 pathway. 2012 PLoS ONE pmid:23071533
Kisos H et al. Increased neuronal α-synuclein pathology associates with its accumulation in oligodendrocytes in mice modeling α-synucleinopathies. 2012 PLoS ONE pmid:23077527
Correia M et al. Crosstalk between Helicobacter pylori and gastric epithelial cells is impaired by docosahexaenoic acid. 2013 PLoS ONE pmid:23577140
Arsenault D et al. DHA improves cognition and prevents dysfunction of entorhinal cortex neurons in 3xTg-AD mice. 2011 PLoS ONE pmid:21383850
Brouwer IA et al. Effect of alpha linolenic acid supplementation on serum prostate specific antigen (PSA): results from the alpha omega trial. 2013 PLoS ONE pmid:24349086
Virtanen JK et al. Serum long-chain n-3 polyunsaturated fatty acids, mercury, and risk of sudden cardiac death in men: a prospective population-based study. 2012 PLoS ONE pmid:22815906
Astarita G et al. Deficient liver biosynthesis of docosahexaenoic acid correlates with cognitive impairment in Alzheimer's disease. 2010 PLoS ONE pmid:20838618
Giroud S et al. Membrane phospholipid fatty acid composition regulates cardiac SERCA activity in a hibernator, the Syrian hamster (Mesocricetus auratus). 2013 PLoS ONE pmid:23650545
Turk HF et al. Alteration of EGFR spatiotemporal dynamics suppresses signal transduction. 2012 PLoS ONE pmid:22761867
Khairallah RJ et al. Improved mitochondrial function with diet-induced increase in either docosahexaenoic acid or arachidonic acid in membrane phospholipids. 2012 PLoS ONE pmid:22479624
Fecchio C et al. α-Synuclein oligomers induced by docosahexaenoic acid affect membrane integrity. 2013 PLoS ONE pmid:24312431
Kang KS et al. Docosahexaenoic acid induces apoptosis in MCF-7 cells in vitro and in vivo via reactive oxygen species formation and caspase 8 activation. 2010 PLoS ONE pmid:20421971
Ishikado A et al. 4-Hydroxy hexenal derived from docosahexaenoic acid protects endothelial cells via Nrf2 activation. 2013 PLoS ONE pmid:23936010
Nuez-Ortín WG et al. Preliminary Validation of a High Docosahexaenoic Acid (DHA) and -Linolenic Acid (ALA) Dietary Oil Blend: Tissue Fatty Acid Composition and Liver Proteome Response in Atlantic Salmon (Salmo salar) Smolts. 2016 PLoS ONE pmid:27556399
Alsharari ZD et al. Serum Fatty Acids, Desaturase Activities and Abdominal Obesity - A Population-Based Study of 60-Year Old Men and Women. 2017 PLoS ONE pmid:28125662
Khaddaj-Mallat R et al. Pro-Resolving Effects of Resolvin D2 in LTD4 and TNF-α Pre-Treated Human Bronchi. 2016 PLoS ONE pmid:27935998
Gladine C et al. Lipid profiling following intake of the omega 3 fatty acid DHA identifies the peroxidized metabolites F4-neuroprostanes as the best predictors of atherosclerosis prevention. 2014 PLoS ONE pmid:24558496
Park J et al. Reciprocal modulation of surface expression of annexin A2 in a human umbilical vein endothelial cell-derived cell line by eicosapentaenoic acid and docosahexaenoic acid. 2014 PLoS ONE pmid:24465474
Xiao G et al. Eicosapentaenoic acid enhances heat stress-impaired intestinal epithelial barrier function in Caco-2 cells. 2013 PLoS ONE pmid:24066055
Mansara PP et al. Differential Ratios of Omega Fatty Acids (AA/EPA+DHA) Modulate Growth, Lipid Peroxidation and Expression of Tumor Regulatory MARBPs in Breast Cancer Cell Lines MCF7 and MDA-MB-231. 2015 PLoS ONE pmid:26325577
Mottola G et al. Aspirin-triggered resolvin D1 attenuates PDGF-induced vascular smooth muscle cell migration via the cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) pathway. 2017 PLoS ONE pmid:28362840
Eickmeier O et al. Pro-resolving lipid mediator Resolvin D1 serves as a marker of lung disease in cystic fibrosis. 2017 PLoS ONE pmid:28158236
Correia M et al. Docosahexaenoic acid inhibits Helicobacter pylori growth in vitro and mice gastric mucosa colonization. 2012 PLoS ONE pmid:22529974
Lopez HL Nutritional interventions to prevent and treat osteoarthritis. Part I: focus on fatty acids and macronutrients. 2012 PM R pmid:22632694
Luczaj W and Skrzydlewska E [The present-day look at lipid peroxidation]. 2006 Postepy Biochem. pmid:17078507
Duda MK [Polyunsaturated fatty acids omega-3 as modulators of intracellular signaling pathways]. 2012 Postepy Biochem. pmid:23214138
Walczewska A et al. [The role of docosahexaenoic acid in neuronal function]. 2011 Postepy Hig Med Dosw (Online) pmid:21677356
Crandell JR et al. Lipid effects of switching from prescription EPA+DHA (omega-3-acid ethyl esters) to prescription EPA only (icosapent ethyl) in dyslipidemic patients. 2016 Postgrad Med pmid:27684412
Leaf DA Omega-3 fatty acids and coronary artery disease. More than a fish tale. 1989 Postgrad Med pmid:2542914
Sadovsky R and Kris-Etherton P Prescription omega-3-acid ethyl esters for the treatment of very high triglycerides. 2009 Postgrad Med pmid:19641280
Harris WS et al. Omega-3 fatty acids and cardiovascular disease: new developments and applications. 2013 Postgrad Med pmid:24200766
Du M et al. Effects of dietary conjugated linoleic acid and linoleic:linolenic acid ratio on polyunsaturated fatty acid status in laying hens. 2000 Poult. Sci. pmid:11194037
Pappas AC et al. Maternal organo-selenium compounds and polyunsaturated fatty acids affect progeny performance and levels of selenium and docosahexaenoic acid in the chick tissues. 2006 Poult. Sci. pmid:16977847
Meluzzi A et al. Effects of dietary vitamin E on the quality of table eggs enriched with n-3 long-chain fatty acids. 2000 Poult. Sci. pmid:10780651
Carrillo-Domínguez S et al. Cholesterol and n-3 and n-6 fatty acid content in eggs from laying hens fed with red crab meal (Pleuroncodes planipes). 2005 Poult. Sci. pmid:15685957
Ko YH et al. Cloning and expression of Tsaiya duck liver fatty acid binding protein. 2004 Poult. Sci. pmid:15554058
Grobas S et al. Influence of source and percentage of fat added to diet on performance and fatty acid composition of egg yolks of two strains of laying hens. 2001 Poult. Sci. pmid:11495470
Cherian G and Sim J Preferential accumulation of n-3 fatty acids in the brain of chicks from eggs enriched with n-3 fatty acids. 1992 Poult. Sci. pmid:1454683
Ding ST and Lilburn MS Changes in fatty acid profiles in different lipid classes during late development of turkey embryos from two genetic lines. 1997 Poult. Sci. pmid:9181615
Santos GA and Silversides FG Utilization of the sex-linked gene for imperfect albinism (S*ALS). 1. Effect of early weight loss on chick metabolism. 1996 Poult. Sci. pmid:8933584
Herber SM and Van Elswyk ME Dietary marine algae promotes efficient deposition of n-3 fatty acids for the production of enriched shell eggs. 1996 Poult. Sci. pmid:9000275
Surai PF and Sparks NH Tissue-specific fatty acid and alpha-tocopherol profiles in male chickens depending on dietary tuna oil and vitamin E provision. 2000 Poult. Sci. pmid:10947182
Koppenol A et al. Effect of the ratio of dietary n-3 fatty acids eicosapentaenoic acid and docosahexaenoic acid on broiler breeder performance, egg quality, and yolk fatty acid composition at different breeder ages. 2014 Poult. Sci. pmid:24604849
Bou R et al. Effect of dietary fat sources and zinc and selenium supplements on the composition and consumer acceptability of chicken meat. 2005 Poult. Sci. pmid:16050130
López-Ferrer S et al. n-3 enrichment of chicken meat. 1. Use of very long-chain fatty acids in chicken diets and their influence on meat quality: fish oil. 2001 Poult. Sci. pmid:11441841
Wang YW et al. Maternal dietary N-3 fatty acids alter the spleen fatty acid composition and bovine serum albumin-induced wing web swelling in broilers. 2002 Poult. Sci. pmid:12455601
Cherian G et al. Dietary conjugated linoleic acid with fish oil alters yolk n-3 and trans fatty acid content and volatile compounds in raw, cooked, and irradiated eggs. 2002 Poult. Sci. pmid:12412926
Allen PC and Danforth HD Effects of dietary supplementation with n-3 fatty acid ethyl esters on coccidiosis in chickens. 1998 Poult. Sci. pmid:9835336
Gao YC and Charter EA Nutritionally important fatty acids in hen egg yolks from different sources. 2000 Poult. Sci. pmid:10875777
Szabó A et al. Differential utilization of hepatic and myocardial fatty acids during forced molt of laying hens. 2005 Poult. Sci. pmid:15685949
Houston L Dietary change in arthritis. 1994 Practitioner pmid:8208662
Mourek J Metabolic syndrome (does it have a common denominator?). 2008 Prague Med Rep pmid:19548590
Muramatsu T et al. Higher dietary intake of alpha-linolenic acid is associated with lower insulin resistance in middle-aged Japanese. 2010 May-Jun Prev Med pmid:20211645
Gomez-Pinilla F The combined effects of exercise and foods in preventing neurological and cognitive disorders. 2011 Prev Med pmid:21281667
Mori TA Dietary n-3 PUFA and CVD: a review of the evidence. 2014 Proc Nutr Soc pmid:24119287
von Schacky C n-3 PUFA in CVD: influence of cytokine polymorphism. 2007 Proc Nutr Soc pmid:17466099
Sijben JW and Calder PC Differential immunomodulation with long-chain n-3 PUFA in health and chronic disease. 2007 Proc Nutr Soc pmid:17466105
Hennebelle M et al. Ageing and apoE change DHA homeostasis: relevance to age-related cognitive decline. 2014 Proc Nutr Soc pmid:24103099
Anil E The impact of EPA and DHA on blood lipids and lipoprotein metabolism: influence of apoE genotype. 2007 Proc Nutr Soc pmid:17343773
Morris MC Nutritional determinants of cognitive aging and dementia. 2012 Proc Nutr Soc pmid:22067138
Ian Givens D and Gibbs RA Current intakes of EPA and DHA in European populations and the potential of animal-derived foods to increase them. 2008 Proc Nutr Soc pmid:18498671
Childs CE et al. Gender differences in the n-3 fatty acid content of tissues. 2008 Proc Nutr Soc pmid:18234128
Calder PC Dietary modification of inflammation with lipids. 2002 Proc Nutr Soc pmid:12296294
Yaqoob P Fatty acids and the immune system: from basic science to clinical applications. 2004 Proc Nutr Soc pmid:15070442
Wainwright PE Dietary essential fatty acids and brain function: a developmental perspective on mechanisms. 2002 Proc Nutr Soc pmid:12002796
Spite M Deciphering the role of n-3 polyunsaturated fatty acid-derived lipid mediators in health and disease. 2013 Proc Nutr Soc pmid:23991833
Cottin SC et al. The differential effects of EPA and DHA on cardiovascular risk factors. 2011 Proc Nutr Soc pmid:21349231
Williams CM and Burdge G Long-chain n-3 PUFA: plant v. marine sources. 2006 Proc Nutr Soc pmid:16441943
Gibbs RA et al. Postgraduate Symposium: Long-chain n-3 PUFA: intakes in the UK and the potential of a chicken meat prototype to increase them. 2010 Proc Nutr Soc pmid:19954567
Calder PC Long-chain fatty acids and inflammation. 2012 Proc Nutr Soc pmid:22369781
Kelley DS and Adkins Y Similarities and differences between the effects of EPA and DHA on markers of atherosclerosis in human subjects. 2012 Proc Nutr Soc pmid:22369859
Vreugdenhil M et al. Polyunsaturated fatty acids modulate sodium and calcium currents in CA1 neurons. 1996 Proc. Natl. Acad. Sci. U.S.A. pmid:8901621
He C et al. Improved spatial learning performance of fat-1 mice is associated with enhanced neurogenesis and neuritogenesis by docosahexaenoic acid. 2009 Proc. Natl. Acad. Sci. U.S.A. pmid:19549874
Hoshi T et al. Omega-3 fatty acids lower blood pressure by directly activating large-conductance Ca²⁺-dependent K⁺ channels. 2013 Proc. Natl. Acad. Sci. U.S.A. pmid:23487785
Hoshi T et al. Mechanism of the modulation of BK potassium channel complexes with different auxiliary subunit compositions by the omega-3 fatty acid DHA. 2013 Proc. Natl. Acad. Sci. U.S.A. pmid:23487786
Abdulnour RE et al. Maresin 1 biosynthesis during platelet-neutrophil interactions is organ-protective. 2014 Proc. Natl. Acad. Sci. U.S.A. pmid:25369934
Pepe S et al. Omega 3 polyunsaturated fatty acid modulates dihydropyridine effects on L-type Ca2+ channels, cytosolic Ca2+, and contraction in adult rat cardiac myocytes. 1994 Proc. Natl. Acad. Sci. U.S.A. pmid:7522322
Scott BL and Bazan NG Membrane docosahexaenoate is supplied to the developing brain and retina by the liver. 1989 Proc. Natl. Acad. Sci. U.S.A. pmid:2523075
Norris PC and Dennis EA Omega-3 fatty acids cause dramatic changes in TLR4 and purinergic eicosanoid signaling. 2012 Proc. Natl. Acad. Sci. U.S.A. pmid:22586114
Zhang G et al. Epoxy metabolites of docosahexaenoic acid (DHA) inhibit angiogenesis, tumor growth, and metastasis. 2013 Proc. Natl. Acad. Sci. U.S.A. pmid:23553837
Kang JX and Leaf A Effects of long-chain polyunsaturated fatty acids on the contraction of neonatal rat cardiac myocytes. 1994 Proc. Natl. Acad. Sci. U.S.A. pmid:7937911
Massaro M et al. The omega-3 fatty acid docosahexaenoate attenuates endothelial cyclooxygenase-2 induction through both NADP(H) oxidase and PKC epsilon inhibition. 2006 Proc. Natl. Acad. Sci. U.S.A. pmid:17018645
Mukherjee PK et al. Neuroprotectin D1: a docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress. 2004 Proc. Natl. Acad. Sci. U.S.A. pmid:15152078
Berger A et al. Anandamide and diet: inclusion of dietary arachidonate and docosahexaenoate leads to increased brain levels of the corresponding N-acylethanolamines in piglets. 2001 Proc. Natl. Acad. Sci. U.S.A. pmid:11353819
Corey EJ et al. Docosahexaenoic acid is a strong inhibitor of prostaglandin but not leukotriene biosynthesis. 1983 Proc. Natl. Acad. Sci. U.S.A. pmid:6304720
Fredman G et al. Resolvin D1 limits 5-lipoxygenase nuclear localization and leukotriene B4 synthesis by inhibiting a calcium-activated kinase pathway. 2014 Proc. Natl. Acad. Sci. U.S.A. pmid:25246560
Harris WS et al. Docosahexaenoic acid ethyl esters ineffective? 2013 Proc. Natl. Acad. Sci. U.S.A. pmid:23671065
Kang JX et al. Free, long-chain, polyunsaturated fatty acids reduce membrane electrical excitability in neonatal rat cardiac myocytes. 1995 Proc. Natl. Acad. Sci. U.S.A. pmid:7732020
Akbar M et al. Docosahexaenoic acid: a positive modulator of Akt signaling in neuronal survival. 2005 Proc. Natl. Acad. Sci. U.S.A. pmid:16040805
Honoré E et al. External blockade of the major cardiac delayed-rectifier K+ channel (Kv1.5) by polyunsaturated fatty acids. 1994 Proc. Natl. Acad. Sci. U.S.A. pmid:8127910
Bruno MJ et al. Docosahexaenoic acid alters bilayer elastic properties. 2007 Proc. Natl. Acad. Sci. U.S.A. pmid:17535898