DHA

Dha is a lipid of Fatty Acyls (FA) class. Dha is associated with abnormalities such as Atherosclerosis, Consumption-archaic term for TB, Chronic disease, Cardiovascular Diseases and Diabetes Mellitus, Non-Insulin-Dependent. The involved functions are known as Inflammation, Oxidation, fatty acid oxidation, Fatty Acid Metabolism and Lipid Metabolism. Dha often locates in Hepatic, Protoplasm, Mucous Membrane, Epithelium and outer membrane. The associated genes with DHA are IMPACT gene, FATE1 gene, GAPDH gene, THOC4 gene and SLC33A1 gene. The related lipids are stearidonic acid, Fatty Acids, Total cholesterol, Lipopolysaccharides and Dietary Fatty Acid. The related experimental models are Mouse Model, Transgenic Model, Animal Disease Models and Arthritis, Experimental.

Cross Reference

Introduction

To understand associated biological information of DHA, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with DHA?

DHA is suspected in Cardiovascular Diseases, Obesity, Ischemia, Hypertensive disease, Coronary Arteriosclerosis, Cerebrovascular accident and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with DHA

MeSH term MeSH ID Detail
Muscular Dystrophy, Duchenne D020388 11 associated lipids
Learning Disorders D007859 11 associated lipids
Aortic Diseases D001018 11 associated lipids
Pregnancy Complications, Cardiovascular D011249 11 associated lipids
Fatty Liver, Alcoholic D005235 11 associated lipids
Acute Coronary Syndrome D054058 11 associated lipids
Sepsis D018805 11 associated lipids
Influenza, Human D007251 11 associated lipids
Pregnancy Complications, Hematologic D011250 11 associated lipids
Shock D012769 11 associated lipids
Long QT Syndrome D008133 10 associated lipids
Dry Eye Syndromes D015352 10 associated lipids
Central Nervous System Diseases D002493 10 associated lipids
Retinal Detachment D012163 10 associated lipids
Vision Disorders D014786 10 associated lipids
Colorectal Neoplasms D015179 10 associated lipids
Asthma, Exercise-Induced D001250 10 associated lipids
Pneumonia D011014 10 associated lipids
Sleep Apnea, Obstructive D020181 9 associated lipids
Magnesium Deficiency D008275 9 associated lipids
Dysmenorrhea D004412 9 associated lipids
Hyperlipidemia, Familial Combined D006950 9 associated lipids
Leukemia, Basophilic, Acute D015471 9 associated lipids
Bone Diseases, Metabolic D001851 9 associated lipids
Carcinoma, Embryonal D018236 8 associated lipids
Diabetes, Gestational D016640 8 associated lipids
Lupus Nephritis D008181 8 associated lipids
Leiomyoma D007889 8 associated lipids
Arthus Reaction D001183 8 associated lipids
Basal Ganglia Diseases D001480 8 associated lipids
Glomerulonephritis, IGA D005922 7 associated lipids
Infant, Premature, Diseases D007235 7 associated lipids
Eye Abnormalities D005124 7 associated lipids
Peripheral Arterial Disease D058729 7 associated lipids
Sleep Wake Disorders D012893 7 associated lipids
Burkholderia Infections D019121 7 associated lipids
Hepatitis C D006526 7 associated lipids
Keratitis D007634 7 associated lipids
Dyslipidemias D050171 7 associated lipids
Plaque, Atherosclerotic D058226 7 associated lipids
Multiple Sclerosis, Relapsing-Remitting D020529 7 associated lipids
Coronary Thrombosis D003328 7 associated lipids
Dementia, Vascular D015140 7 associated lipids
Nutrition Disorders D009748 6 associated lipids
Intermittent Claudication D007383 6 associated lipids
Retinitis Pigmentosa D012174 6 associated lipids
Hyperlipoproteinemia Type IV D006953 6 associated lipids
Premature Birth D047928 6 associated lipids
Malnutrition D044342 6 associated lipids
Optic Nerve Diseases D009901 6 associated lipids
Per page 10 20 50 100 | Total 240

PubChem Associated disorders and diseases

What pathways are associated with DHA

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with DHA?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with DHA?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with DHA?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with DHA?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with DHA?

Mouse Model

Mouse Model are used in the study 'Homeostatic regulation of photoreceptor cell integrity: significance of the potent mediator neuroprotectin D1 biosynthesized from docosahexaenoic acid: the Proctor Lecture.' (Bazan NG, 2007), Mouse Model are used in the study 'Omega-3 fatty acids EPA and DHA: health benefits throughout life.' (Swanson D et al., 2012), Mouse Model are used in the study 'Docosahexaenoic acid attenuates hepatic inflammation, oxidative stress, and fibrosis without decreasing hepatosteatosis in a Ldlr(-/-) mouse model of western diet-induced nonalcoholic steatohepatitis.' (Depner CM et al., 2013) and Mouse Model are used in the study 'Wax esters from the marine copepod Calanus finmarchicus reduce diet-induced obesity and obesity-related metabolic disorders in mice.' (Höper AC et al., 2014).

Transgenic Model

Transgenic Model are used in the study 'Loss of MAP function leads to hippocampal synapse loss and deficits in the Morris Water Maze with aging.' (Ma QL et al., 2014).

Animal Disease Models

Animal Disease Models are used in the study 'Fish oil increases muscle protein mass and modulates Akt/FOXO, TLR4, and NOD signaling in weanling piglets after lipopolysaccharide challenge.' (Liu Y et al., 2013).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with DHA

Download all related citations
Per page 10 20 50 100 | Total 7336
Authors Title Published Journal PubMed Link
Reardon HT et al. Dietary long-chain polyunsaturated fatty acids upregulate expression of FADS3 transcripts. 2013 Prostaglandins Leukot. Essent. Fatty Acids pmid:22398025
Zhang J et al. Characteristics of fatty acid distribution is associated with colorectal cancer prognosis. 2013 Prostaglandins Leukot. Essent. Fatty Acids pmid:23465412
Galvao TF et al. Marine n3 polyunsaturated fatty acids enhance resistance to mitochondrial permeability transition in heart failure but do not improve survival. 2013 Am. J. Physiol. Heart Circ. Physiol. pmid:23103493
Hegarty B and Parker G Fish oil as a management component for mood disorders - an evolving signal. 2013 Curr Opin Psychiatry pmid:23108232
Miller BJ et al. Dietary supplements for preventing postnatal depression. 2013 Cochrane Database Syst Rev pmid:24158923
Ren LJ et al. Impact of phosphate concentration on docosahexaenoic acid production and related enzyme activities in fermentation of Schizochytrium sp. 2013 Bioprocess Biosyst Eng pmid:23108442
Jansen D et al. Effects of specific multi-nutrient enriched diets on cerebral metabolism, cognition and neuropathology in AβPPswe-PS1dE9 mice. 2013 PLoS ONE pmid:24086523
Abdelmoaty S et al. Spinal actions of lipoxin A4 and 17(R)-resolvin D1 attenuate inflammation-induced mechanical hypersensitivity and spinal TNF release. 2013 PLoS ONE pmid:24086560
Stamey Lanier J et al. Mammary uptake of fatty acids supplied by intravenous triacylglycerol infusion to lactating dairy cows. 2013 Lipids pmid:23504269
Bazan NG et al. Docosahexaenoic acid and its derivative neuroprotectin D1 display neuroprotective properties in the retina, brain and central nervous system. 2013 Nestle Nutr Inst Workshop Ser pmid:24107502
Tsuboi H et al. Associations of depressive symptoms with serum proportions of palmitic and arachidonic acids, and α-tocopherol effects among male population--a preliminary study. 2013 Clin Nutr pmid:22901744
Lindberg M et al. Long-term tracking of plasma phospholipid fatty acid concentrations and their correlation with the dietary intake of marine foods in newly diagnosed diabetic patients: results from a follow-up of the HUNT Study, Norway. 2013 Br. J. Nutr. pmid:22846205
MacLean E et al. n-3 Fatty acids inhibit transcription of human IL-13: implications for development of T helper type 2 immune responses. 2013 Br. J. Nutr. pmid:22849952
Hajjaji N and Bougnoux P Selective sensitization of tumors to chemotherapy by marine-derived lipids: a review. 2013 Cancer Treat. Rev. pmid:22850619
Miyashima A et al. DHA requirement of larval Japanese flounder Paralichthys olivaceus in the rotifer feeding period. 2013 Commun. Agric. Appl. Biol. Sci. pmid:25141691
Morais S et al. Effect of Senegalese sole broodstock nutrition on early larval performance and metabolism of long-chain polyunsaturated fatty acids (DHA and EPA). 2013 Commun. Agric. Appl. Biol. Sci. pmid:25141693
Paz-Raymundo B et al. Effect of DHA on the expression of the delta6-desaturase during larval development of yellow snapper, Lutjanus argentiventris. 2013 Commun. Agric. Appl. Biol. Sci. pmid:25141709
Botelho PB et al. Effect of Echium oil compared with marine oils on lipid profile and inhibition of hepatic steatosis in LDLr knockout mice. 2013 Lipids Health Dis pmid:23510369
Chien KL et al. A Taiwanese food frequency questionnaire correlates with plasma docosahexaenoic acid but not with plasma eicosapentaenoic acid levels: questionnaires and plasma biomarkers. 2013 BMC Med Res Methodol pmid:23414574
Kasuya F et al. Effect of the non-steroidal anti-inflammatory drugs on the acyl-CoA synthetase activity toward medium-chain, long-chain and polyunsaturated fatty acids in mitochondria of mouse liver and brain. 2013 J Enzyme Inhib Med Chem pmid:22299587
Maskrey BH et al. Emerging importance of omega-3 fatty acids in the innate immune response: molecular mechanisms and lipidomic strategies for their analysis. 2013 Mol Nutr Food Res pmid:23417926
Lapillonne A et al. Lipid needs of preterm infants: updated recommendations. 2013 J. Pediatr. pmid:23445847
West AA et al. Choline intake influences phosphatidylcholine DHA enrichment in nonpregnant women but not in pregnant women in the third trimester. 2013 Am. J. Clin. Nutr. pmid:23446897
Sánchez-Martín MJ et al. Improved conformational stability of the visual G protein-coupled receptor rhodopsin by specific interaction with docosahexaenoic acid phospholipid. 2013 Chembiochem pmid:23447332
Del Bó C et al. Horse meat consumption affects iron status, lipid profile and fatty acid composition of red blood cells in healthy volunteers. 2013 Int J Food Sci Nutr pmid:23025273
Lim SN et al. Improved outcome after spinal cord compression injury in mice treated with docosahexaenoic acid. 2013 Exp. Neurol. pmid:23026410
Miyata J et al. Dysregulated synthesis of protectin D1 in eosinophils from patients with severe asthma. 2013 J. Allergy Clin. Immunol. pmid:23006546
Lau BY et al. Investigating the role of polyunsaturated fatty acids in bone development using animal models. 2013 Molecules pmid:24248147
Scholtz SA et al. Clinical overview of effects of dietary long-chain polyunsaturated fatty acids during the perinatal period. 2013 Nestle Nutr Inst Workshop Ser pmid:24107504
Randall KM et al. Effects of dietary supplementation of coriander oil, in canola oil diets, on the metabolism of [1-(14)C] 18:3n-3 and [1-(14)C] 18:2n-6 in rainbow trout hepatocytes. 2013 Comp. Biochem. Physiol. B, Biochem. Mol. Biol. pmid:23867781
McNamara RK et al. Low docosahexaenoic acid status is associated with reduced indices in cortical integrity in the anterior cingulate of healthy male children: a 1H MRS Study. 2013 Nutr Neurosci pmid:23582513
Saha SS and Ghosh M Protective effect of conjugated linolenic acid isomers present in vegetable oils against arsenite-induced renal toxicity in rat model. 2013 Nutrition pmid:23422533
Ammann EM et al. ω-3 fatty acids and domain-specific cognitive aging: secondary analyses of data from WHISCA. 2013 Neurology pmid:24068783
Berberovic E et al. Arachidonic and docosahexaenoic acid in the blood of a mother and umbilical vein in diabetic pregnant women. 2013 J. Matern. Fetal. Neonatal. Med. pmid:23480524
Lee HN et al. Resolvin D1 stimulates efferocytosis through p50/p50-mediated suppression of tumor necrosis factor-α expression. 2013 J. Cell. Sci. pmid:23788426
Araújo JR et al. Gestational diabetes mellitus decreases placental uptake of long-chain polyunsaturated fatty acids: involvement of long-chain acyl-CoA synthetase. 2013 J. Nutr. Biochem. pmid:23790250
Russell KL et al. Low brain DHA content worsens sensorimotor outcomes after TBI and decreases TBI-induced Timp1 expression in juvenile rats. 2013 Prostaglandins Leukot. Essent. Fatty Acids pmid:23796971
Xue Z et al. Production of omega-3 eicosapentaenoic acid by metabolic engineering of Yarrowia lipolytica. 2013 Nat. Biotechnol. pmid:23873085
Pase MP and Stough C Describing a taxonomy of cognitive processes for clinical trials assessing cognition. 2013 Am. J. Clin. Nutr. pmid:23873682
Fedor DM et al. The effect of docosahexaenoic acid on t10, c12-conjugated linoleic acid-induced changes in fatty acid composition of mouse liver, adipose, and muscle. 2013 Metab Syndr Relat Disord pmid:23170930
Kuratko CN et al. The relationship of docosahexaenoic acid (DHA) with learning and behavior in healthy children: a review. 2013 Nutrients pmid:23877090
Vigerust NF et al. Krill oil versus fish oil in modulation of inflammation and lipid metabolism in mice transgenic for TNF-α. 2013 Eur J Nutr pmid:22923017
Calder PC Editorial: Fat chance to enhance B cell function. 2013 J. Leukoc. Biol. pmid:23547174
Aarak KE et al. Release of EPA and DHA from salmon oil - a comparison of in vitro digestion with human and porcine gastrointestinal enzymes. 2013 Br. J. Nutr. pmid:23510480
Stonehouse W et al. DHA supplementation improved both memory and reaction time in healthy young adults: a randomized controlled trial. 2013 Am. J. Clin. Nutr. pmid:23515006
Fagan P and Wijesundera C Rapid isolation of omega-3 long-chain polyunsaturated fatty acids using monolithic high performance liquid chromatography columns. 2013 J Sep Sci pmid:23559561
Jans JJ et al. Supplementation with a powdered blend of PUFAs normalizes DHA and AA levels in patients with PKU. 2013 Mol. Genet. Metab. pmid:23562298
Rahmawaty S et al. Dietary intake and food sources of EPA, DPA and DHA in Australian children. 2013 Lipids pmid:23881381
Faxén-Irving G et al. Effects on transthyretin in plasma and cerebrospinal fluid by DHA-rich n - 3 fatty acid supplementation in patients with Alzheimer's disease: the OmegAD study. 2013 J. Alzheimers Dis. pmid:23563245
Guo B et al. Identification and heterologous expression of a Δ4-fatty acid desaturase gene from Isochrysis sphaerica. 2013 J. Microbiol. Biotechnol. pmid:23851273
Jung SB et al. Docosahexaenoic acid improves vascular function via up-regulation of SIRT1 expression in endothelial cells. 2013 Biochem. Biophys. Res. Commun. pmid:23806688
Decsi T and Boehm G trans Isomeric fatty acids are inversely related to the availability of long-chain PUFAs in the perinatal period. 2013 Am. J. Clin. Nutr. pmid:23824720
Lundström SL et al. Lipid mediator serum profiles in asthmatics significantly shift following dietary supplementation with omega-3 fatty acids. 2013 Mol Nutr Food Res pmid:23824870
Lohner S et al. Lower n-3 long-chain polyunsaturated fatty acid values in patients with phenylketonuria: a systematic review and meta-analysis. 2013 Nutr Res pmid:23827125
Zhang X et al. Resolvin D1 reverts lipopolysaccharide-induced TJ proteins disruption and the increase of cellular permeability by regulating IκBα signaling in human vascular endothelial cells. 2013 Oxid Med Cell Longev pmid:24381712
Kelly OJ et al. Long-chain polyunsaturated fatty acids may mutually benefit both obesity and osteoporosis. 2013 Nutr Res pmid:23827126
García-Sastre A Lessons from lipids in the fight against influenza. 2013 Cell pmid:23827671
Chen HF and Su HM Exposure to a maternal n-3 fatty acid-deficient diet during brain development provokes excessive hypothalamic-pituitary-adrenal axis responses to stress and behavioral indices of depression and anxiety in male rat offspring later in life. 2013 J. Nutr. Biochem. pmid:22818715
Hiratsuka S et al. Effects of dietary sialic acid in n-3 fatty acid-deficient dams during pregnancy and lactation on the learning abilities of their pups after weaning. 2013 J. Nutr. Sci. Vitaminol. pmid:23727644
Willatts P et al. Effects of long-chain PUFA supplementation in infant formula on cognitive function in later childhood. 2013 Am. J. Clin. Nutr. pmid:23783296
Meyer BJ et al. Improvement of major depression is associated with increased erythrocyte DHA. 2013 Lipids pmid:23733443
Zawadzki M et al. Perna canaliculus lipid complex PCSO-524â„¢ demonstrated pain relief for osteoarthritis patients benchmarked against fish oil, a randomized trial, without placebo control. 2013 Mar Drugs pmid:23739042
Morel PC et al. Effect of lipid type on growth performance, meat quality and the content of long chain n-3 fatty acids in pork meat. 2013 Meat Sci. pmid:23739265
Ramkumar HL et al. Nutrient supplementation with n3 polyunsaturated fatty acids, lutein, and zeaxanthin decrease A2E accumulation and VEGF expression in the retinas of Ccl2/Cx3cr1-deficient mice on Crb1rd8 background. 2013 J. Nutr. pmid:23677863
Nobre ME et al. Eicosapentaenoic acid and docosahexaenoic acid exert anti-inflammatory and antinociceptive effects in rodents at low doses. 2013 Nutr Res pmid:23684444
Xu ZZ et al. Neuroprotectin/protectin D1 protects against neuropathic pain in mice after nerve trauma. 2013 Ann. Neurol. pmid:23686636
Flock MR et al. Immunometabolic role of long-chain omega-3 fatty acids in obesity-induced inflammation. 2013 Diabetes Metab. Res. Rev. pmid:23592441
Nagachinta S and Akoh CC Synthesis of structured lipid enriched with omega fatty acids and sn-2 palmitic acid by enzymatic esterification and its incorporation in powdered infant formula. 2013 J. Agric. Food Chem. pmid:23597247
Mortensen K and Tawia S Sustained breastfeeding. 2013 Breastfeed Rev pmid:23600325
Liu Y et al. Fish oil alleviates activation of the hypothalamic-pituitary-adrenal axis associated with inhibition of TLR4 and NOD signaling pathways in weaned piglets after a lipopolysaccharide challenge. 2013 J. Nutr. pmid:24005609
Li X et al. Cyclooxygenase-2 induction in macrophages is modulated by docosahexaenoic acid via interactions with free fatty acid receptor 4 (FFA4). 2013 FASEB J. pmid:24005906
Gordon WC and Bazan NG Mediator lipidomics in ophthalmology: targets for modulation in inflammation, neuroprotection and nerve regeneration. 2013 Curr. Eye Res. pmid:23981028
Elsherbiny ME et al. Interaction of brain fatty acid-binding protein with the polyunsaturated fatty acid environment as a potential determinant of poor prognosis in malignant glioma. 2013 Prog. Lipid Res. pmid:23981365
Wang Y et al. DHA inhibits protein degradation more efficiently than EPA by regulating the PPARγ/NFκB pathway in C2C12 myotubes. 2013 Biomed Res Int pmid:23984342
Chien KL et al. Comparison of predictive performance of various fatty acids for the risk of cardiovascular disease events and all-cause deaths in a community-based cohort. 2013 Atherosclerosis pmid:23958266
Nobili V et al. Docosahexaenoic acid for the treatment of fatty liver: randomised controlled trial in children. 2013 Nutr Metab Cardiovasc Dis pmid:23220074
Chung ML et al. Profiling of oxidized lipid products of marine fish under acute oxidative stress. 2013 Food Chem. Toxicol. pmid:23220612
van der Merwe LF et al. Long-chain PUFA supplementation in rural African infants: a randomized controlled trial of effects on gut integrity, growth, and cognitive development. 2013 Am. J. Clin. Nutr. pmid:23221579
Hoshi T et al. A point mutation in the human Slo1 channel that impairs its sensitivity to omega-3 docosahexaenoic acid. 2013 J. Gen. Physiol. pmid:24127525
Betancor MB et al. Physiological pathways involved in nutritional muscle dystrophy and healing in European sea bass (Dicentrarchus labrax) larvae. 2013 Comp. Biochem. Physiol., Part A Mol. Integr. Physiol. pmid:23202658
Latorre R and Contreras G Keeping you healthy: BK channel activation by omega-3 fatty acids. 2013 J. Gen. Physiol. pmid:24127527
Crawford MA et al. A quantum theory for the irreplaceable role of docosahexaenoic acid in neural cell signalling throughout evolution. 2013 Prostaglandins Leukot. Essent. Fatty Acids pmid:23206328
Nagai T et al. Actual ratios of triacylglycerol positional isomers and enantiomers comprising saturated fatty acids and highly unsaturated fatty acids in fishes and marine mammals. 2013 J Oleo Sci pmid:24292353
Das UN Autism as a disorder of deficiency of brain-derived neurotrophic factor and altered metabolism of polyunsaturated fatty acids. 2013 Nutrition pmid:23911220
Zeilmaker MJ et al. Fish consumption during child bearing age: a quantitative risk-benefit analysis on neurodevelopment. 2013 Food Chem. Toxicol. pmid:22079313
Köhnke T et al. Acetylsalicylic Acid reduces the severity of dextran sodium sulfate-induced colitis and increases the formation of anti-inflammatory lipid mediators. 2013 Biomed Res Int pmid:24083240
Wu BT et al. Low fish intake is associated with low blood concentrations of vitamin D, choline and n-3 DHA in pregnant women. 2013 Br. J. Nutr. pmid:22691303
Flock MR et al. Determinants of erythrocyte omega-3 fatty acid content in response to fish oil supplementation: a dose-response randomized controlled trial. 2013 J Am Heart Assoc pmid:24252845
Jaudszus A et al. Evaluation of suppressive and pro-resolving effects of EPA and DHA in human primary monocytes and T-helper cells. 2013 J. Lipid Res. pmid:23349208
Neuhofer A et al. Impaired local production of proresolving lipid mediators in obesity and 17-HDHA as a potential treatment for obesity-associated inflammation. 2013 Diabetes pmid:23349501
Sofi F et al. The atherosclerotic risk profile is affected differently by fish flesh with a similar EPA and DHA content but different n-6/n-3 ratio. 2013 Asia Pac J Clin Nutr pmid:23353608
McEwen BJ et al. Effects of omega-3 polyunsaturated fatty acids on platelet function in healthy subjects and subjects with cardiovascular disease. 2013 Semin. Thromb. Hemost. pmid:23329646
Turk HF et al. Inhibitory effects of omega-3 fatty acids on injury-induced epidermal growth factor receptor transactivation contribute to delayed wound healing. 2013 Am. J. Physiol., Cell Physiol. pmid:23426968
Sun SN et al. Docosahexaenoic acid (DHA) induces apoptosis in human hepatocellular carcinoma cells. 2013 Int J Clin Exp Pathol pmid:23330014
Przyrembel H and Agostoni C Growing-up milk: a necessity or marketing? 2013 World Rev Nutr Diet pmid:24029786
Lyons MR et al. Impact of sex on the heart's metabolic and functional responses to diabetic therapies. 2013 Am. J. Physiol. Heart Circ. Physiol. pmid:24043256
Uhl O et al. Changes of molecular glycerophospholipid species in plasma and red blood cells during docosahexaenoic acid supplementation. 2013 Lipids pmid:24043586
Aliche-Djoudi F et al. A role for lipid rafts in the protection afforded by docosahexaenoic acid against ethanol toxicity in primary rat hepatocytes. 2013 Food Chem. Toxicol. pmid:23907024
Thom VT et al. Regulation of ecto-5´-nucleotidase by docosahexaenoic acid in human endothelial cells. 2013 Cell. Physiol. Biochem. pmid:23988425
Gupta A et al. Pollen baiting facilitates the isolation of marine thraustochytrids with potential in omega-3 and biodiesel production. 2013 J. Ind. Microbiol. Biotechnol. pmid:23990167