DHA

Dha is a lipid of Fatty Acyls (FA) class. Dha is associated with abnormalities such as Atherosclerosis, Consumption-archaic term for TB, Chronic disease, Cardiovascular Diseases and Diabetes Mellitus, Non-Insulin-Dependent. The involved functions are known as Inflammation, Oxidation, fatty acid oxidation, Fatty Acid Metabolism and Lipid Metabolism. Dha often locates in Hepatic, Protoplasm, Mucous Membrane, Epithelium and outer membrane. The associated genes with DHA are IMPACT gene, FATE1 gene, GAPDH gene, THOC4 gene and SLC33A1 gene. The related lipids are stearidonic acid, Fatty Acids, Total cholesterol, Lipopolysaccharides and Dietary Fatty Acid. The related experimental models are Mouse Model, Transgenic Model, Animal Disease Models and Arthritis, Experimental.

Cross Reference

Introduction

To understand associated biological information of DHA, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with DHA?

DHA is suspected in Cardiovascular Diseases, Obesity, Ischemia, Hypertensive disease, Coronary Arteriosclerosis, Cerebrovascular accident and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with DHA

MeSH term MeSH ID Detail
Retinal Detachment D012163 10 associated lipids
Carcinoma, Lewis Lung D018827 22 associated lipids
Choline Deficiency D002796 16 associated lipids
Medulloblastoma D008527 22 associated lipids
Zellweger Syndrome D015211 39 associated lipids
Atrial Fibrillation D001281 16 associated lipids
Coronary Thrombosis D003328 7 associated lipids
Ventricular Dysfunction, Left D018487 33 associated lipids
Aortic Diseases D001018 11 associated lipids
Genetic Predisposition to Disease D020022 24 associated lipids
Hepatitis C D006526 7 associated lipids
Atherosclerosis D050197 85 associated lipids
Leukemia-Lymphoma, Adult T-Cell D015459 25 associated lipids
Multiple Sclerosis, Relapsing-Remitting D020529 7 associated lipids
Metabolic Syndrome D024821 44 associated lipids
Dyslexia D004410 3 associated lipids
Hypercalciuria D053565 4 associated lipids
Diabetes, Gestational D016640 8 associated lipids
Acute Coronary Syndrome D054058 11 associated lipids
Plaque, Atherosclerotic D058226 7 associated lipids
Malnutrition D044342 6 associated lipids
Insulin Resistance D007333 99 associated lipids
Diabetes Complications D048909 4 associated lipids
Sleep Apnea, Obstructive D020181 9 associated lipids
Peripheral Arterial Disease D058729 7 associated lipids
Intracranial Arteriosclerosis D002537 4 associated lipids
Macular Degeneration D008268 5 associated lipids
Dyslipidemias D050171 7 associated lipids
Asthma, Exercise-Induced D001250 10 associated lipids
Deficiency Diseases D003677 12 associated lipids
Pregnancy Complications D011248 19 associated lipids
Myoglobinuria D009212 3 associated lipids
Weight Loss D015431 56 associated lipids
Critical Illness D016638 13 associated lipids
Blister D001768 16 associated lipids
Memory Disorders D008569 33 associated lipids
Glucose Intolerance D018149 13 associated lipids
Parkinson Disease, Secondary D010302 17 associated lipids
Dry Eye Syndromes D015352 10 associated lipids
Acute Lung Injury D055371 33 associated lipids
Death, Sudden, Cardiac D016757 12 associated lipids
Neurodegenerative Diseases D019636 32 associated lipids
Lupus Nephritis D008181 8 associated lipids
Parkinsonian Disorders D020734 20 associated lipids
Neuralgia D009437 28 associated lipids
Peripheral Nerve Injuries D059348 6 associated lipids
Muscular Dystrophy, Duchenne D020388 11 associated lipids
Keratitis, Herpetic D016849 5 associated lipids
Sleep Wake Disorders D012893 7 associated lipids
Burkholderia Infections D019121 7 associated lipids
Per page 10 20 50 100 | Total 240

PubChem Associated disorders and diseases

What pathways are associated with DHA

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with DHA?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with DHA?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with DHA?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with DHA?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with DHA?

Mouse Model

Mouse Model are used in the study 'Homeostatic regulation of photoreceptor cell integrity: significance of the potent mediator neuroprotectin D1 biosynthesized from docosahexaenoic acid: the Proctor Lecture.' (Bazan NG, 2007), Mouse Model are used in the study 'Omega-3 fatty acids EPA and DHA: health benefits throughout life.' (Swanson D et al., 2012), Mouse Model are used in the study 'Docosahexaenoic acid attenuates hepatic inflammation, oxidative stress, and fibrosis without decreasing hepatosteatosis in a Ldlr(-/-) mouse model of western diet-induced nonalcoholic steatohepatitis.' (Depner CM et al., 2013) and Mouse Model are used in the study 'Wax esters from the marine copepod Calanus finmarchicus reduce diet-induced obesity and obesity-related metabolic disorders in mice.' (Höper AC et al., 2014).

Transgenic Model

Transgenic Model are used in the study 'Loss of MAP function leads to hippocampal synapse loss and deficits in the Morris Water Maze with aging.' (Ma QL et al., 2014).

Animal Disease Models

Animal Disease Models are used in the study 'Fish oil increases muscle protein mass and modulates Akt/FOXO, TLR4, and NOD signaling in weanling piglets after lipopolysaccharide challenge.' (Liu Y et al., 2013).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with DHA

Download all related citations
Per page 10 20 50 100 | Total 7336
Authors Title Published Journal PubMed Link
Croasdell A et al. Resolvin D1 Dampens Pulmonary Inflammation and Promotes Clearance of Nontypeable Haemophilus influenzae. 2016 J. Immunol. pmid:26843331
Abdulnour RE et al. Aspirin-triggered resolvin D1 is produced during self-resolving gram-negative bacterial pneumonia and regulates host immune responses for the resolution of lung inflammation. 2016 Mucosal Immunol pmid:26647716
Berrueta L et al. Stretching Impacts Inflammation Resolution in Connective Tissue. 2016 J. Cell. Physiol. pmid:26588184
López-Luna P et al. Fate of orally administered radioactive fatty acids in the late-pregnant rat. 2016 Am. J. Physiol. Endocrinol. Metab. pmid:26714850
Wang ZQ et al. Docosahexaenoic Acid Attenuates Doxorubicin-induced Cytotoxicity and Inflammation by Suppressing NF-κB/iNOS/NO Signaling Pathway Activation in H9C2 Cardiac Cells. 2016 J. Cardiovasc. Pharmacol. pmid:26657886
Georgieva R et al. Phospholipase A2-Induced Remodeling Processes on Liquid-Ordered/Liquid-Disordered Membranes Containing Docosahexaenoic or Oleic Acid: A Comparison Study. 2016 Langmuir pmid:26794691
Inoue Y et al. Kidney and Liver Injuries After Major Burns in Rats Are Prevented by Resolvin D2. 2016 Crit. Care Med. pmid:26509319
Arnardottir H et al. Human milk proresolving mediators stimulate resolution of acute inflammation. 2016 Mucosal Immunol pmid:26462421
Park HG et al. Metabolic fate of docosahexaenoic acid (DHA; 22:6n-3) in human cells: direct retroconversion of DHA to eicosapentaenoic acid (20:5n-3) dominates over elongation to tetracosahexaenoic acid (24:6n-3). 2016 FEBS Lett. pmid:27543786
Nagai T et al. Circulating Omega-6, But Not Omega-3 Polyunsaturated Fatty Acids, Are Associated with Clinical Outcomes in Patients with Acute Decompensated Heart Failure. 2016 PLoS ONE pmid:27824904
Li R et al. Maresin 1 Mitigates Inflammatory Response and Protects Mice from Sepsis. 2016 Mediators Inflamm. pmid:28042205
Suzuki-Kemuriyama N et al. Different Effects of Eicosapentaenoic and Docosahexaenoic Acids on Atherogenic High-Fat Diet-Induced Non-Alcoholic Fatty Liver Disease in Mice. 2016 PLoS ONE pmid:27333187
Kim SM et al. Role of Inflammatory Signaling in the Differential Effects of Saturated and Poly-unsaturated Fatty Acids on Peripheral Circadian Clocks. 2016 EBioMedicine pmid:27322464
Fialkow J Omega-3 Fatty Acid Formulations in Cardiovascular Disease: Dietary Supplements are Not Substitutes for Prescription Products. 2016 Am J Cardiovasc Drugs pmid:27138439
Wong BH et al. Mfsd2a Is a Transporter for the Essential ω-3 Fatty Acid Docosahexaenoic Acid (DHA) in Eye and Is Important for Photoreceptor Cell Development. 2016 J. Biol. Chem. pmid:27008858
Pinçon A et al. Human apolipoprotein E allele and docosahexaenoic acid intake modulate peripheral cholesterol homeostasis in mice. 2016 J. Nutr. Biochem. pmid:27239755
Dagorn F et al. Exploitable Lipids and Fatty Acids in the Invasive Oyster Crassostrea gigas on the French Atlantic Coast. 2016 Mar Drugs pmid:27231919
Tian Y et al. Bioconversion of Docosapentaenoic Acid in Human Cell Lines, Caco-2, HepG2, and THP-1. 2016 J Oleo Sci pmid:27829615
Seeger DR and Murphy EJ Mouse Strain Impacts Fatty Acid Uptake and Trafficking in Liver, Heart, and Brain: A Comparison of C57BL/6 and Swiss Webster Mice. 2016 Lipids pmid:26797754
Qin X et al. Brown but not white adipose cells synthesize omega-3 docosahexaenoic acid in culture. 2016 Prostaglandins Leukot. Essent. Fatty Acids pmid:26802938
Andersen MK et al. Identification of Novel Genetic Determinants of Erythrocyte Membrane Fatty Acid Composition among Greenlanders. 2016 PLoS Genet. pmid:27341449
Benabdoune H et al. The role of resolvin D1 in the regulation of inflammatory and catabolic mediators in osteoarthritis. 2016 Inflamm. Res. pmid:27056390
Abeywardena MY et al. Rise in DPA Following SDA-Rich Dietary Echium Oil Less Effective in Affording Anti-Arrhythmic Actions Compared to High DHA Levels Achieved with Fish Oil in Sprague-Dawley Rats. 2016 Nutrients pmid:26742064
Tran DQ et al. Induction of Gnrh mRNA expression by the ω-3 polyunsaturated fatty acid docosahexaenoic acid and the saturated fatty acid palmitate in a GnRH-synthesizing neuronal cell model, mHypoA-GnRH/GFP. 2016 Mol. Cell. Endocrinol. pmid:26923440
Bernhard W et al. Developmental changes in polyunsaturated fetal plasma phospholipids and feto-maternal plasma phospholipid ratios and their association with bronchopulmonary dysplasia. 2016 Eur J Nutr pmid:26363610
Devassy JG et al. Omega-3 Polyunsaturated Fatty Acids and Oxylipins in Neuroinflammation and Management of Alzheimer Disease. 2016 Adv Nutr pmid:27633106
Mason RP et al. Eicosapentaenoic acid reduces membrane fluidity, inhibits cholesterol domain formation, and normalizes bilayer width in atherosclerotic-like model membranes. 2016 Biochim. Biophys. Acta pmid:27718370
Moriyama R et al. Long-chain unsaturated fatty acids reduce the transcriptional activity of the rat follicle-stimulating hormone β-subunit gene. 2016 J. Reprod. Dev. pmid:26853521
Luo B et al. Resolvin D1 Programs Inflammation Resolution by Increasing TGF-β Expression Induced by Dying Cell Clearance in Experimental Autoimmune Neuritis. 2016 J. Neurosci. pmid:27629711
Barden A et al. n-3 Fatty Acid Supplementation and Leukocyte Telomere Length in Patients with Chronic Kidney Disease. 2016 Nutrients pmid:27007392
Zhao Q et al. Resolvin D1 mitigates energy metabolism disorder after ischemia-reperfusion of the rat lung. 2016 J Transl Med pmid:27009328
Prieto P et al. Activation of autophagy in macrophages by pro-resolving lipid mediators. 2015 Autophagy pmid:26506892
Cox R et al. Resolvins Decrease Oxidative Stress Mediated Macrophage and Epithelial Cell Interaction through Decreased Cytokine Secretion. 2015 PLoS ONE pmid:26317859
de Oliveira JR et al. AT-RvD1 modulates CCL-2 and CXCL-8 production and NF-κB, STAT-6, SOCS1, and SOCS3 expression on bronchial epithelial cells stimulated with IL-4. 2015 Biomed Res Int pmid:26075216
Dalli J et al. Novel proresolving and tissue-regenerative resolvin and protectin sulfido-conjugated pathways. 2015 FASEB J. pmid:25713027
Cespedes E et al. Adipose tissue n-3 fatty acids and metabolic syndrome. 2015 Eur J Clin Nutr pmid:25097001
Ting HC et al. Polyunsaturated fatty acids incorporation into cardiolipin in H9c2 cardiac myoblast. 2015 J. Nutr. Biochem. pmid:25866137
Keim SA and Branum AM Dietary intake of polyunsaturated fatty acids and fish among US children 12-60 months of age. 2015 Matern Child Nutr pmid:24034437
Musto AE et al. Hippocampal neuro-networks and dendritic spine perturbations in epileptogenesis are attenuated by neuroprotectin d1. 2015 PLoS ONE pmid:25617763
Dorninger F et al. Homeostasis of phospholipids - The level of phosphatidylethanolamine tightly adapts to changes in ethanolamine plasmalogens. 2015 Biochim. Biophys. Acta pmid:25463479
Krishnamoorthy N et al. Cutting edge: maresin-1 engages regulatory T cells to limit type 2 innate lymphoid cell activation and promote resolution of lung inflammation. 2015 J. Immunol. pmid:25539814
Askari M et al. Tissue fatty acid composition and secretory phospholipase-A2 activity in oral squamous cell carcinoma. 2015 Clin Transl Oncol pmid:25351172
Jones PJ et al. High-oleic canola oil consumption enriches LDL particle cholesteryl oleate content and reduces LDL proteoglycan binding in humans. 2015 Atherosclerosis pmid:25528432
Chen CT et al. Plasma non-esterified docosahexaenoic acid is the major pool supplying the brain. 2015 Sci Rep pmid:26511533
Holen E et al. Combining eicosapentaenoic acid, decosahexaenoic acid and arachidonic acid, using a fully crossed design, affect gene expression and eicosanoid secretion in salmon head kidney cells in vitro. 2015 Fish Shellfish Immunol. pmid:26003739
Park HG et al. The fatty acid desaturase 2 (FADS2) gene product catalyzes Δ4 desaturation to yield n-3 docosahexaenoic acid and n-6 docosapentaenoic acid in human cells. 2015 FASEB J. pmid:26065859
Chew EY et al. Effect of Omega-3 Fatty Acids, Lutein/Zeaxanthin, or Other Nutrient Supplementation on Cognitive Function: The AREDS2 Randomized Clinical Trial. 2015 JAMA pmid:26305649
Dodington DW et al. Higher Intakes of Fruits and Vegetables, β-Carotene, Vitamin C, α-Tocopherol, EPA, and DHA Are Positively Associated with Periodontal Healing after Nonsurgical Periodontal Therapy in Nonsmokers but Not in Smokers. 2015 J. Nutr. pmid:26423734
Bobiński R and Mikulska M The ins and outs of maternal-fetal fatty acid metabolism. 2015 Acta Biochim. Pol. pmid:26345097
Hieda K et al. Pharmacological effect of functional foods with a hypotensive action. 2015 Nippon Yakurigaku Zasshi pmid:26165340