DHA

Dha is a lipid of Fatty Acyls (FA) class. Dha is associated with abnormalities such as Atherosclerosis, Consumption-archaic term for TB, Chronic disease, Cardiovascular Diseases and Diabetes Mellitus, Non-Insulin-Dependent. The involved functions are known as Inflammation, Oxidation, fatty acid oxidation, Fatty Acid Metabolism and Lipid Metabolism. Dha often locates in Hepatic, Protoplasm, Mucous Membrane, Epithelium and outer membrane. The associated genes with DHA are IMPACT gene, FATE1 gene, GAPDH gene, THOC4 gene and SLC33A1 gene. The related lipids are stearidonic acid, Fatty Acids, Total cholesterol, Lipopolysaccharides and Dietary Fatty Acid. The related experimental models are Mouse Model, Transgenic Model, Animal Disease Models and Arthritis, Experimental.

Cross Reference

Introduction

To understand associated biological information of DHA, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with DHA?

DHA is suspected in Cardiovascular Diseases, Obesity, Ischemia, Hypertensive disease, Coronary Arteriosclerosis, Cerebrovascular accident and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with DHA

MeSH term MeSH ID Detail
Asthma D001249 52 associated lipids
Leukemia, Myeloid D007951 52 associated lipids
Kidney Failure, Chronic D007676 51 associated lipids
Thrombosis D013927 49 associated lipids
Precancerous Conditions D011230 48 associated lipids
Fatty Liver D005234 48 associated lipids
Psoriasis D011565 47 associated lipids
Coronary Artery Disease D003324 47 associated lipids
Liver Neoplasms, Experimental D008114 46 associated lipids
Metabolic Syndrome D024821 44 associated lipids
Per page 10 20 50 100 | Total 240

PubChem Associated disorders and diseases

What pathways are associated with DHA

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with DHA?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with DHA?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with DHA?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with DHA?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with DHA?

Mouse Model

Mouse Model are used in the study 'Homeostatic regulation of photoreceptor cell integrity: significance of the potent mediator neuroprotectin D1 biosynthesized from docosahexaenoic acid: the Proctor Lecture.' (Bazan NG, 2007), Mouse Model are used in the study 'Omega-3 fatty acids EPA and DHA: health benefits throughout life.' (Swanson D et al., 2012), Mouse Model are used in the study 'Docosahexaenoic acid attenuates hepatic inflammation, oxidative stress, and fibrosis without decreasing hepatosteatosis in a Ldlr(-/-) mouse model of western diet-induced nonalcoholic steatohepatitis.' (Depner CM et al., 2013) and Mouse Model are used in the study 'Wax esters from the marine copepod Calanus finmarchicus reduce diet-induced obesity and obesity-related metabolic disorders in mice.' (Höper AC et al., 2014).

Transgenic Model

Transgenic Model are used in the study 'Loss of MAP function leads to hippocampal synapse loss and deficits in the Morris Water Maze with aging.' (Ma QL et al., 2014).

Animal Disease Models

Animal Disease Models are used in the study 'Fish oil increases muscle protein mass and modulates Akt/FOXO, TLR4, and NOD signaling in weanling piglets after lipopolysaccharide challenge.' (Liu Y et al., 2013).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with DHA

Download all related citations
Per page 10 20 50 100 | Total 7336
Authors Title Published Journal PubMed Link
Yu Y et al. DHA prevents altered 5-HT1A, 5-HT2A, CB1 and GABAA receptor binding densities in the brain of male rats fed a high-saturated-fat diet. 2013 J. Nutr. Biochem. pmid:23337348
Chen F et al. Fish oil attenuates liver injury caused by LPS in weaned pigs associated with inhibition of TLR4 and nucleotide-binding oligomerization domain protein signaling pathways. 2013 Innate Immun pmid:23339927
Tikhonenko M et al. N-3 polyunsaturated Fatty acids prevent diabetic retinopathy by inhibition of retinal vascular damage and enhanced endothelial progenitor cell reparative function. 2013 PLoS ONE pmid:23383097
Casey JM et al. Effect of stearidonic acid-enriched soybean oil on fatty acid profile and metabolic parameters in lean and obese Zucker rats. 2013 Lipids Health Dis pmid:24139088
Chang CY et al. Docosahexaenoic acid reduces cellular inflammatory response following permanent focal cerebral ischemia in rats. 2013 J. Nutr. Biochem. pmid:24139673
Fernández-Iglesias A et al. DHA sensitizes FaO cells to tert-BHP-induced oxidative effects. Protective role of EGCG. 2013 Food Chem. Toxicol. pmid:24140970
Larson MK et al. Exogenous modification of platelet membranes with the omega-3 fatty acids EPA and DHA reduces platelet procoagulant activity and thrombus formation. 2013 Am. J. Physiol., Cell Physiol. pmid:23174566
Mussi SV et al. New approach to improve encapsulation and antitumor activity of doxorubicin loaded in solid lipid nanoparticles. 2013 Eur J Pharm Sci pmid:23178339
Braga SF and Almgren MM Complementary therapies in cystic fibrosis: nutritional supplements and herbal products. 2013 J Pharm Pract pmid:23178411
Klingler M et al. Comparison of the incorporation of orally administered DHA into plasma, erythrocyte and cheek cell glycerophospholipids. 2013 Br. J. Nutr. pmid:22874641
Robinson DT et al. Docosahexaenoic and arachidonic acid levels in extremely low birth weight infants with prolonged exposure to intravenous lipids. 2013 J. Pediatr. pmid:22878111
Betancor MB et al. Oxidative stress in sea bass Dicentrarchus labrax larvae: interaction of high dietary DHA contents and several antioxidant nutrients. 2013 Commun. Agric. Appl. Biol. Sci. pmid:25141617
Hagemann A et al. Content of essential fatty acids in cultivated Acartia tonsa nauplii fed a DHA-deficient Tetraselmis sp. concentrate. 2013 Commun. Agric. Appl. Biol. Sci. pmid:25141657
Rai AK et al. Bioefficacy of EPA-DHA from lipids recovered from fish processing wastes through biotechnological approaches. 2013 Food Chem pmid:23017395
van den Elsen LW et al. n-3 Long-chain PUFA reduce allergy-related mediator release by human mast cells in vitro via inhibition of reactive oxygen species. 2013 Br. J. Nutr. pmid:23021516
Kamolrat T and Gray SR The effect of eicosapentaenoic and docosahexaenoic acid on protein synthesis and breakdown in murine C2C12 myotubes. 2013 Biochem. Biophys. Res. Commun. pmid:23438435
Cieslik M et al. Docosahexaenoic acid and tetracyclines as promising neuroprotective compounds with poly(ADP-ribose) polymerase inhibitory activities for oxidative/genotoxic stress treatment. 2013 Neurochem. Int. pmid:23439385
Koltsida O et al. Toll-like receptor 7 stimulates production of specialized pro-resolving lipid mediators and promotes resolution of airway inflammation. 2013 EMBO Mol Med pmid:23584892
Li J et al. Comparative metabolomics analysis of docosahexaenoic acid fermentation processes by Schizochytrium sp. under different oxygen availability conditions. 2013 OMICS pmid:23586678
Berman DR et al. Docosahexaenoic acid augments hypothermic neuroprotection in a neonatal rat asphyxia model. 2013 Neonatology pmid:23817197
Singhal A et al. Docosahexaenoic acid supplementation, vascular function and risk factors for cardiovascular disease: a randomized controlled trial in young adults. 2013 J Am Heart Assoc pmid:23817470
Hoss E et al. Control of late cornified envelope genes relevant to psoriasis risk: upregulation by 1,25-dihydroxyvitamin D3 and plant-derived delphinidin. 2013 Arch. Dermatol. Res. pmid:23839497
Meijerink J et al. N-Acyl amines of docosahexaenoic acid and other n-3 polyunsatured fatty acids - from fishy endocannabinoids to potential leads. 2013 Br. J. Pharmacol. pmid:23088259
Mozaffarian D et al. Plasma phospholipid long-chain ω-3 fatty acids and total and cause-specific mortality in older adults: a cohort study. 2013 Ann. Intern. Med. pmid:23546563
Codabaccus MB et al. Restoration of EPA and DHA in rainbow trout (Oncorhynchus mykiss) using a finishing fish oil diet at two different water temperatures. 2013 Food Chem pmid:23768353
Correia Bacarin C et al. Fish oil provides robust and sustained memory recovery after cerebral ischemia: influence of treatment regimen. 2013 Physiol. Behav. pmid:23770426
Jones ML et al. Maternal dietary omega-3 fatty acid intake increases resolvin and protectin levels in the rat placenta. 2013 J. Lipid Res. pmid:23723388
Xie W et al. Resolvin D1 reduces deterioration of tight junction proteins by upregulating HO-1 in LPS-induced mice. 2013 Lab. Invest. pmid:23857007
Li Q et al. A comparative study: In vitro effects of EPA and DHA on immune functions of head-kidney macrophages isolated from large yellow croaker (Larmichthys crocea). 2013 Fish Shellfish Immunol. pmid:23859878
Chen S and Subbaiah PV Regioisomers of phosphatidylcholine containing DHA and their potential to deliver DHA to the brain: role of phospholipase specificities. 2013 Lipids pmid:23604781
Titova OE et al. Dietary intake of eicosapentaenoic and docosahexaenoic acids is linked to gray matter volume and cognitive function in elderly. 2013 Age (Dordr) pmid:22791395
Klek S et al. Four-week parenteral nutrition using a third generation lipid emulsion (SMOFlipid)--a double-blind, randomised, multicentre study in adults. 2013 Clin Nutr pmid:22796064
Barber E et al. Comparative actions of omega-3 fatty acids on in-vitro lipid droplet formation. 2013 Prostaglandins Leukot. Essent. Fatty Acids pmid:24012207
Sheets KG et al. Microglial ramification and redistribution concomitant with the attenuation of choroidal neovascularization by neuroprotectin D1. 2013 Mol. Vis. pmid:23922492
Baselga-Escudero L et al. Chronic administration of proanthocyanidins or docosahexaenoic acid reverses the increase of miR-33a and miR-122 in dyslipidemic obese rats. 2013 PLoS ONE pmid:23922812
Bjorgvinsdottir L et al. Inflammatory response following heart surgery and association with n-3 and n-6 long-chain polyunsaturated fatty acids in plasma and red blood cell membrane lipids. 2013 Prostaglandins Leukot. Essent. Fatty Acids pmid:23999253
Trofimiuk E and Braszko JJ Concomitant docosahexaenoic acid administration ameliorates stress-induced cognitive impairment in rats. 2013 Physiol. Behav. pmid:23672853
Cheng R et al. Cloning and functional analysis of putative malonyl-CoA:acyl-carrier protein transacylase gene from the docosahexaenoic acid-producer Schizochytrium sp. TIO1101. 2013 World J. Microbiol. Biotechnol. pmid:23292648
Chen J et al. Docosahexaenoic acid (DHA) attenuated paraquat induced lung damage in mice. 2013 Inhal Toxicol pmid:23293968
Gibson RA et al. Docosahexaenoic acid synthesis from alpha-linolenic acid is inhibited by diets high in polyunsaturated fatty acids. 2013 Prostaglandins Leukot. Essent. Fatty Acids pmid:22515943
Steffen BT et al. n-3 and n-6 Fatty acids are independently associated with lipoprotein-associated phospholipase A2 in the Multi-Ethnic Study of Atherosclerosis. 2013 Br. J. Nutr. pmid:23551952
Derogis PB et al. The development of a specific and sensitive LC-MS-based method for the detection and quantification of hydroperoxy- and hydroxydocosahexaenoic acids as a tool for lipidomic analysis. 2013 PLoS ONE pmid:24204871
Storck Lindholm E et al. Different fatty acid pattern in breast milk of obese compared to normal-weight mothers. 2013 Prostaglandins Leukot. Essent. Fatty Acids pmid:23273824
Atwell K et al. Respiratory hospitalisation of infants supplemented with docosahexaenoic acid as preterm neonates. 2013 J Paediatr Child Health pmid:23279074
Sato K et al. Selective and potent inhibitory effect of docosahexaenoic acid (DHA) on U46619-induced contraction in rat aorta. 2013 J Smooth Muscle Res pmid:24304639
Engel S et al. Docosahexaenoic acid status at 9 months is inversely associated with communicative skills in 3-year-old girls. 2013 Matern Child Nutr pmid:22642227
Li D et al. Resolvin D1 and aspirin-triggered resolvin D1 regulate histamine-stimulated conjunctival goblet cell secretion. 2013 Mucosal Immunol pmid:23462912
Weintraub H Update on marine omega-3 fatty acids: management of dyslipidemia and current omega-3 treatment options. 2013 Atherosclerosis pmid:24075771
Stulnig G et al. Docosahexaenoic acid (DHA)-induced heme oxygenase-1 attenuates cytotoxic effects of DHA in vascular smooth muscle cells. 2013 Atherosclerosis pmid:24075775
Nagachinta S and Akoh CC Spray-dried structured lipid containing long-chain polyunsaturated fatty acids for use in infant formulas. 2013 J. Food Sci. pmid:24024870