DHA

Dha is a lipid of Fatty Acyls (FA) class. Dha is associated with abnormalities such as Atherosclerosis, Consumption-archaic term for TB, Chronic disease, Cardiovascular Diseases and Diabetes Mellitus, Non-Insulin-Dependent. The involved functions are known as Inflammation, Oxidation, fatty acid oxidation, Fatty Acid Metabolism and Lipid Metabolism. Dha often locates in Hepatic, Protoplasm, Mucous Membrane, Epithelium and outer membrane. The associated genes with DHA are IMPACT gene, FATE1 gene, GAPDH gene, THOC4 gene and SLC33A1 gene. The related lipids are stearidonic acid, Fatty Acids, Total cholesterol, Lipopolysaccharides and Dietary Fatty Acid. The related experimental models are Mouse Model, Transgenic Model, Animal Disease Models and Arthritis, Experimental.

Cross Reference

Introduction

To understand associated biological information of DHA, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with DHA?

DHA is suspected in Cardiovascular Diseases, Obesity, Ischemia, Hypertensive disease, Coronary Arteriosclerosis, Cerebrovascular accident and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with DHA

MeSH term MeSH ID Detail
Pneumonia, Bacterial D018410 16 associated lipids
Mammary Neoplasms, Animal D015674 27 associated lipids
Premature Birth D047928 6 associated lipids
Hypoxia-Ischemia, Brain D020925 22 associated lipids
Long QT Syndrome D008133 10 associated lipids
Short Bowel Syndrome D012778 3 associated lipids
Retinoblastoma D012175 12 associated lipids
Hyperlipidemia, Familial Combined D006950 9 associated lipids
Neurotoxicity Syndromes D020258 34 associated lipids
Vibrio Infections D014735 5 associated lipids
Polycystic Kidney Diseases D007690 12 associated lipids
Intracranial Hemorrhages D020300 2 associated lipids
Intermittent Claudication D007383 6 associated lipids
Carcinoma, Embryonal D018236 8 associated lipids
Depression, Postpartum D019052 3 associated lipids
Dyskinesias D020820 3 associated lipids
Dysbiosis D064806 2 associated lipids
Glaucoma, Open-Angle D005902 3 associated lipids
Milk Hypersensitivity D016269 4 associated lipids
Dementia, Vascular D015140 7 associated lipids
Plaque, Amyloid D058225 19 associated lipids
Eye Abnormalities D005124 7 associated lipids
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma D054218 5 associated lipids
Chondrodysplasia Punctata, Rhizomelic D018902 4 associated lipids
Chronic Pain D059350 5 associated lipids
Neuroaxonal Dystrophies D019150 3 associated lipids
Spinocerebellar Ataxias D020754 4 associated lipids
Paracoccidioidomycosis D010229 2 associated lipids
Leukemia, Prolymphocytic D015463 2 associated lipids
Hydroa Vacciniforme D006837 1 associated lipids
Trophoblastic Tumor, Placental Site D018245 1 associated lipids
Phenylketonuria, Maternal D017042 1 associated lipids
Refsum Disease, Infantile D052919 1 associated lipids
Pulmonary Valve Stenosis D011666 1 associated lipids
Cerebrovascular Trauma D020214 1 associated lipids
Histiocytoma, Malignant Fibrous D051677 1 associated lipids
Decapitation D049248 2 associated lipids
Communication Disorders D003147 1 associated lipids
Geographic Atrophy D057092 1 associated lipids
Lordosis D008141 1 associated lipids
Per page 10 20 50 100 | Total 240

PubChem Associated disorders and diseases

What pathways are associated with DHA

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with DHA?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with DHA?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with DHA?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with DHA?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with DHA?

Mouse Model

Mouse Model are used in the study 'Homeostatic regulation of photoreceptor cell integrity: significance of the potent mediator neuroprotectin D1 biosynthesized from docosahexaenoic acid: the Proctor Lecture.' (Bazan NG, 2007), Mouse Model are used in the study 'Omega-3 fatty acids EPA and DHA: health benefits throughout life.' (Swanson D et al., 2012), Mouse Model are used in the study 'Docosahexaenoic acid attenuates hepatic inflammation, oxidative stress, and fibrosis without decreasing hepatosteatosis in a Ldlr(-/-) mouse model of western diet-induced nonalcoholic steatohepatitis.' (Depner CM et al., 2013) and Mouse Model are used in the study 'Wax esters from the marine copepod Calanus finmarchicus reduce diet-induced obesity and obesity-related metabolic disorders in mice.' (Höper AC et al., 2014).

Transgenic Model

Transgenic Model are used in the study 'Loss of MAP function leads to hippocampal synapse loss and deficits in the Morris Water Maze with aging.' (Ma QL et al., 2014).

Animal Disease Models

Animal Disease Models are used in the study 'Fish oil increases muscle protein mass and modulates Akt/FOXO, TLR4, and NOD signaling in weanling piglets after lipopolysaccharide challenge.' (Liu Y et al., 2013).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with DHA

Download all related citations
Per page 10 20 50 100 | Total 7336
Authors Title Published Journal PubMed Link
Shomonov-Wagner L et al. Alpha linolenic acid in maternal diet halts the lipid disarray due to saturated fatty acids in the liver of mice offspring at weaning. 2015 Lipids Health Dis pmid:25889505
Lehmann C et al. Lipoxin and resolvin biosynthesis is dependent on 5-lipoxygenase activating protein. 2015 FASEB J. pmid:26289316
Hsiao HM et al. Resolvin D1 Reduces Emphysema and Chronic Inflammation. 2015 Am. J. Pathol. pmid:26468975
Cox R et al. Enhanced Resolution of Hyperoxic Acute Lung Injury as a result of Aspirin Triggered Resolvin D1 Treatment. 2015 Am. J. Respir. Cell Mol. Biol. pmid:25647402
Pierdomenico AM et al. MicroRNA-181b regulates ALX/FPR2 receptor expression and proresolution signaling in human macrophages. 2015 J. Biol. Chem. pmid:25505240
Saito H et al. Variation of Lipids and Fatty Acids of the Japanese Freshwater Eel, Anguilla japonica, during Spawning Migration. 2015 J Oleo Sci pmid:26028326
Chiang N et al. Identification of resolvin D2 receptor mediating resolution of infections and organ protection. 2015 J. Exp. Med. pmid:26195725
Wang X et al. Resolution of inflammation is altered in Alzheimer's disease. 2015 Alzheimers Dement pmid:24530025
Suo R et al. Generation of Tetracosahexaenoic Acid in Benthic Marine Organisms. 2015 J Oleo Sci pmid:26136172
Kanan Y et al. Neuroprotectin D1 is synthesized in the cone photoreceptor cell line 661W and elicits protection against light-induced stress. 2015 Cell. Mol. Neurobiol. pmid:25212825
Serhan CN et al. Protectins and maresins: New pro-resolving families of mediators in acute inflammation and resolution bioactive metabolome. 2015 Biochim. Biophys. Acta pmid:25139562
Wang CW et al. Maresin 1 Biosynthesis and Proresolving Anti-infective Functions with Human-Localized Aggressive Periodontitis Leukocytes. 2015 Infect. Immun. pmid:26667839
Nordgren TM et al. Maresin-1 reduces airway inflammation associated with acute and repetitive exposures to organic dust. 2015 Transl Res pmid:25655838
Kotani K et al. Enzymatic preparation of human milk fat substitutes and their oxidation stability. 2015 J Oleo Sci pmid:25757431
Hashim RB et al. Fatty acid compositions of silver catfish, Pangasius sp. farmed in several rivers of Pahang, Malaysia. 2015 J Oleo Sci pmid:25748380
Fischer T [Pharmacological therapy of age-related macular degeneration based on etiopathogenesis]. 2015 Orv Hetil pmid:26548469
Clouard C et al. Dietary linoleic and α-linolenic acids affect anxiety-related responses and exploratory activity in growing pigs. 2015 J. Nutr. pmid:25644359
Wang Y et al. Mesoscale Simulations and Experimental Studies of pH-Sensitive Micelles for Controlled Drug Delivery. 2015 ACS Appl Mater Interfaces pmid:26539742
Amminger GP et al. Predictors of treatment response in young people at ultra-high risk for psychosis who received long-chain omega-3 fatty acids. 2015 Transl Psychiatry pmid:25585167
Ercan S et al. Induction of omega 6 inflammatory pathway by sodium metabisulfite in rat liver and its attenuation by ghrelin. 2015 Lipids Health Dis pmid:25889219
Talvas J et al. Immunonutrition stimulates immune functions and antioxidant defense capacities of leukocytes in radiochemotherapy-treated head & neck and esophageal cancer patients: A double-blind randomized clinical trial. 2015 Clin Nutr pmid:25575640
Maciejewska D et al. Fatty acid changes help to better understand regression of nonalcoholic fatty liver disease. 2015 World J. Gastroenterol. pmid:25574105
Berge RK et al. Krill oil reduces plasma triacylglycerol level and improves related lipoprotein particle concentration, fatty acid composition and redox status in healthy young adults - a pilot study. 2015 Lipids Health Dis pmid:26666303
Morin C et al. Eicosapentaenoic acid and docosapentaenoic acid monoglycerides are more potent than docosahexaenoic acid monoglyceride to resolve inflammation in a rheumatoid arthritis model. 2015 Arthritis Res. Ther. pmid:26022389
Yoshinaga K et al. Differential effects of triacylglycerol positional isomers containing n-3 series highly unsaturated fatty acids on lipid metabolism in C57BL/6J mice. 2015 J. Nutr. Biochem. pmid:25448607
Cheatham CL and Sheppard KW Synergistic Effects of Human Milk Nutrients in the Support of Infant Recognition Memory: An Observational Study. 2015 Nutrients pmid:26540073
Harrison JL et al. Resolvins AT-D1 and E1 differentially impact functional outcome, post-traumatic sleep, and microglial activation following diffuse brain injury in the mouse. 2015 Brain Behav. Immun. pmid:25585137
Brigandi SA et al. Autistic children exhibit decreased levels of essential Fatty acids in red blood cells. 2015 Int J Mol Sci pmid:25946342
Ossani GP et al. Short-term menhaden oil rich diet changes renal lipid profile in acute kidney injury. 2015 J Oleo Sci pmid:25948137
Samokhvalov V et al. PPARδ signaling mediates the cytotoxicity of DHA in H9c2 cells. 2015 Toxicol. Lett. pmid:25300478
Wang Y et al. Maresin 1 Inhibits Epithelial-to-Mesenchymal Transition in Vitro and Attenuates Bleomycin Induced Lung Fibrosis in Vivo. 2015 Shock pmid:26196843
Yang S et al. Effect of thermal processing on astaxanthin and astaxanthin esters in pacific white shrimp Litopenaeus vannamei. 2015 J Oleo Sci pmid:25757428
Véricel E et al. Moderate oral supplementation with docosahexaenoic acid improves platelet function and oxidative stress in type 2 diabetic patients. 2015 Thromb. Haemost. pmid:25832443
Wijendran V et al. Long-chain polyunsaturated fatty acids attenuate the IL-1β-induced proinflammatory response in human fetal intestinal epithelial cells. 2015 Pediatr. Res. pmid:26270575
Mason JK et al. α-linolenic acid and docosahexaenoic acid, alone and combined with trastuzumab, reduce HER2-overexpressing breast cancer cell growth but differentially regulate HER2 signaling pathways. 2015 Lipids Health Dis pmid:26282560
Esmaeili V et al. Dietary fatty acids affect semen quality: a review. 2015 Andrology pmid:25951427
Mohajeri S and Newman SA Review of evidence for dietary influences on atopic dermatitis. 2014 Jul-Aug Skin Therapy Lett. pmid:25188523
Akimov MG et al. [The influence of docosahexaenoic acid moiety on cytotoxic activity of 1,2,4-thiadiazole derivatives]. 2014 Jul-Aug Biomed Khim pmid:25249531
Kar S Omacor and omega-3 fatty acids for treatment of coronary artery disease and the pleiotropic effects. 2014 Jan-Feb Am J Ther pmid:21975796
Casanova E et al. Omega-3 polyunsaturated fatty acids and proanthocyanidins improve postprandial metabolic flexibility in rat. 2014 Jan-Feb Biofactors pmid:23983179
Harris WS and Schmitt TL Unexpected similarity in RBC DHA and AA levels between bottlenose dolphins and humans. 2014 Feb-Mar Prostaglandins Leukot. Essent. Fatty Acids pmid:24393427
Amiano P et al. Intake of total omega-3 fatty acids, eicosapentaenoic acid and docosahexaenoic acid and risk of coronary heart disease in the Spanish EPIC cohort study. 2014 Nutr Metab Cardiovasc Dis pmid:24360762
Currais A et al. Modulation of p25 and inflammatory pathways by fisetin maintains cognitive function in Alzheimer's disease transgenic mice. 2014 Aging Cell pmid:24341874
Chua A et al. Effect of docosahexaenoic acid and furan fatty acids on cytokinesis block micronucleus cytome assay biomarkers in astrocytoma cell lines under conditions of oxidative stress. 2014 Environ. Mol. Mutagen. pmid:24828973
Chan SS et al. Association between high dietary intake of the n-3 polyunsaturated fatty acid docosahexaenoic acid and reduced risk of Crohn's disease. 2014 Aliment. Pharmacol. Ther. pmid:24611981
Mussi SV et al. Novel nanostructured lipid carrier co-loaded with doxorubicin and docosahexaenoic acid demonstrates enhanced in vitro activity and overcomes drug resistance in MCF-7/Adr cells. 2014 Pharm. Res. pmid:24522814
De Felice C et al. Oxidative brain damage in Mecp2-mutant murine models of Rett syndrome. 2014 Neurobiol. Dis. pmid:24769161
Adarme-Vega TC et al. Towards sustainable sources for omega-3 fatty acids production. 2014 Curr. Opin. Biotechnol. pmid:24607804
Walhovd KB et al. Blood markers of fatty acids and vitamin D, cardiovascular measures, body mass index, and physical activity relate to longitudinal cortical thinning in normal aging. 2014 Neurobiol. Aging pmid:24332985
Eady TN et al. Docosahexaenoic acid complexed to albumin provides neuroprotection after experimental stroke in aged rats. 2014 Neurobiol. Dis. pmid:24063996