DHA

Dha is a lipid of Fatty Acyls (FA) class. Dha is associated with abnormalities such as Atherosclerosis, Consumption-archaic term for TB, Chronic disease, Cardiovascular Diseases and Diabetes Mellitus, Non-Insulin-Dependent. The involved functions are known as Inflammation, Oxidation, fatty acid oxidation, Fatty Acid Metabolism and Lipid Metabolism. Dha often locates in Hepatic, Protoplasm, Mucous Membrane, Epithelium and outer membrane. The associated genes with DHA are IMPACT gene, FATE1 gene, GAPDH gene, THOC4 gene and SLC33A1 gene. The related lipids are stearidonic acid, Fatty Acids, Total cholesterol, Lipopolysaccharides and Dietary Fatty Acid. The related experimental models are Mouse Model, Transgenic Model, Animal Disease Models and Arthritis, Experimental.

Cross Reference

Introduction

To understand associated biological information of DHA, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with DHA?

DHA is suspected in Cardiovascular Diseases, Obesity, Ischemia, Hypertensive disease, Coronary Arteriosclerosis, Cerebrovascular accident and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with DHA

MeSH term MeSH ID Detail
Leukemia, Basophilic, Acute D015471 9 associated lipids
Bone Diseases, Metabolic D001851 9 associated lipids
Retinal Detachment D012163 10 associated lipids
Vision Disorders D014786 10 associated lipids
Colorectal Neoplasms D015179 10 associated lipids
Asthma, Exercise-Induced D001250 10 associated lipids
Pneumonia D011014 10 associated lipids
Long QT Syndrome D008133 10 associated lipids
Dry Eye Syndromes D015352 10 associated lipids
Central Nervous System Diseases D002493 10 associated lipids
Per page 10 20 50 100 | Total 240

PubChem Associated disorders and diseases

What pathways are associated with DHA

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with DHA?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with DHA?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with DHA?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with DHA?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with DHA?

Mouse Model

Mouse Model are used in the study 'Homeostatic regulation of photoreceptor cell integrity: significance of the potent mediator neuroprotectin D1 biosynthesized from docosahexaenoic acid: the Proctor Lecture.' (Bazan NG, 2007), Mouse Model are used in the study 'Omega-3 fatty acids EPA and DHA: health benefits throughout life.' (Swanson D et al., 2012), Mouse Model are used in the study 'Docosahexaenoic acid attenuates hepatic inflammation, oxidative stress, and fibrosis without decreasing hepatosteatosis in a Ldlr(-/-) mouse model of western diet-induced nonalcoholic steatohepatitis.' (Depner CM et al., 2013) and Mouse Model are used in the study 'Wax esters from the marine copepod Calanus finmarchicus reduce diet-induced obesity and obesity-related metabolic disorders in mice.' (Höper AC et al., 2014).

Transgenic Model

Transgenic Model are used in the study 'Loss of MAP function leads to hippocampal synapse loss and deficits in the Morris Water Maze with aging.' (Ma QL et al., 2014).

Animal Disease Models

Animal Disease Models are used in the study 'Fish oil increases muscle protein mass and modulates Akt/FOXO, TLR4, and NOD signaling in weanling piglets after lipopolysaccharide challenge.' (Liu Y et al., 2013).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with DHA

Download all related citations
Per page 10 20 50 100 | Total 7336
Authors Title Published Journal PubMed Link
Westberg G and Tarkowski A Effect of MaxEPA in patients with SLE. A double-blind, crossover study. 1990 Scand. J. Rheumatol. pmid:2186476
Thusgaard M et al. Effect of fish oil (n-3 polyunsaturated fatty acids) on plasma lipids, lipoproteins and inflammatory markers in HIV-infected patients treated with antiretroviral therapy: a randomized, double-blind, placebo-controlled study. 2009 Scand. J. Infect. Dis. pmid:19685375
Khalfoun B et al. Docosahexaenoic and eicosapentaenoic acids inhibit human lymphoproliferative responses in vitro but not the expression of T cell surface activation markers. 1996 Scand. J. Immunol. pmid:8602457
Solakivi T et al. Serum fatty acid profile in subjects with irritable bowel syndrome. 2011 Scand. J. Gastroenterol. pmid:21073373
Andersson L et al. Hydrolysis of phosphatidylethanolamine by human pancreatic phospholipase A2. Effect of bile salts. 1994 Scand. J. Gastroenterol. pmid:8171289
Hexeberg S et al. Docosahexaenoic acid induces lipid accumulation in myocardial cells of rats. 1994 Scand. J. Clin. Lab. Invest. pmid:7709170
Hagve TA et al. Membrane fluidity and fatty acid metabolism in kidney cells from rats fed purified eicosapentaenoic acid or purified docosahexaenoic acid. 1998 Scand. J. Clin. Lab. Invest. pmid:9670342
Eritsland J et al. Long-term effects of n-3 fatty acids on serum lipids and glycaemic control. 1994 Scand. J. Clin. Lab. Invest. pmid:7939369
Foulon T et al. Effects of fish oil fatty acids on plasma lipids and lipoproteins and oxidant-antioxidant imbalance in healthy subjects. 1999 Scand. J. Clin. Lab. Invest. pmid:10463462
Schjøtt J et al. Infusion of EPA and DHA lipid emulsions: effects on heart lipids and tolerance to ischaemia-reperfusion in the isolated rat heart. 1993 Scand. J. Clin. Lab. Invest. pmid:8140399
Hagve TA et al. The decrease in osmotic fragility of erythrocytes during supplementation with n-3 fatty acids is a transient phenomenon. 1991 Scand. J. Clin. Lab. Invest. pmid:1835122
Carvajal O and Angulo O Effect of n-3 polyunsaturated fatty acids on the lipidic profile of healthy Mexican volunteers. 1997 May-Jun Salud Publica Mex pmid:9304226
Chetty N et al. Fatty acid composition of some South African fresh-water fish. 1989 S. Afr. Med. J. pmid:2552593
Buznikov GA et al. [Cholinergic regulation of the sea urchin embryonic and larval development]. 2001 Ross Fiziol Zh Im I M Sechenova pmid:11822358
Cardoso C et al. Methylmercury risks and EPA + DHA benefits associated with seafood consumption in Europe. 2010 Risk Anal. pmid:20604879
Yazawa K [Importance of "health foods", EPA and DHA, for preventive medicine]. 2004 Rinsho Byori pmid:15137325
Torres AG and Trugo NM Evidence of inadequate docosahexaenoic acid status in Brazilian pregnant and lactating women. 2009 Rev Saude Publica pmid:19287877
Wright AK et al. Slowly progressive dopamine cell loss--a model on which to test neuroprotective strategies for Parkinson's disease? 2009 Rev Neurosci pmid:19774787
Gutiérrez-Mata AP et al. [Neurological, neuropsychological, and ophthalmological evolution after one year of docosahexaenoic acid supplementation in phenylketonuric patients]. 2012 Rev Neurol pmid:22829083
Martínez M et al. [Treatment of generalized peroxisomal disorders with docosahexaenoic acid ethyl ether]. 1999 Rev Neurol pmid:10778491