DHA

Dha is a lipid of Fatty Acyls (FA) class. Dha is associated with abnormalities such as Atherosclerosis, Consumption-archaic term for TB, Chronic disease, Cardiovascular Diseases and Diabetes Mellitus, Non-Insulin-Dependent. The involved functions are known as Inflammation, Oxidation, fatty acid oxidation, Fatty Acid Metabolism and Lipid Metabolism. Dha often locates in Hepatic, Protoplasm, Mucous Membrane, Epithelium and outer membrane. The associated genes with DHA are IMPACT gene, FATE1 gene, GAPDH gene, THOC4 gene and SLC33A1 gene. The related lipids are stearidonic acid, Fatty Acids, Total cholesterol, Lipopolysaccharides and Dietary Fatty Acid. The related experimental models are Mouse Model, Transgenic Model, Animal Disease Models and Arthritis, Experimental.

Cross Reference

Introduction

To understand associated biological information of DHA, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with DHA?

DHA is suspected in Cardiovascular Diseases, Obesity, Ischemia, Hypertensive disease, Coronary Arteriosclerosis, Cerebrovascular accident and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with DHA

MeSH term MeSH ID Detail
Short Bowel Syndrome D012778 3 associated lipids
Sleep Wake Disorders D012893 7 associated lipids
Spinal Cord Injuries D013119 34 associated lipids
Stomach Ulcer D013276 75 associated lipids
Thrombosis D013927 49 associated lipids
Thymus Neoplasms D013953 15 associated lipids
Uterine Neoplasms D014594 18 associated lipids
Uveitis D014605 14 associated lipids
Vascular Diseases D014652 16 associated lipids
Ventricular Fibrillation D014693 16 associated lipids
Vibrio Infections D014735 5 associated lipids
Vision Disorders D014786 10 associated lipids
Vitamin E Deficiency D014811 29 associated lipids
Dementia, Vascular D015140 7 associated lipids
Colorectal Neoplasms D015179 10 associated lipids
Zellweger Syndrome D015211 39 associated lipids
Dry Eye Syndromes D015352 10 associated lipids
Reperfusion Injury D015427 65 associated lipids
Myocardial Reperfusion Injury D015428 20 associated lipids
Weight Gain D015430 101 associated lipids
Per page 10 20 50 100 | Total 240

PubChem Associated disorders and diseases

What pathways are associated with DHA

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with DHA?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with DHA?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with DHA?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with DHA?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with DHA?

Mouse Model

Mouse Model are used in the study 'Homeostatic regulation of photoreceptor cell integrity: significance of the potent mediator neuroprotectin D1 biosynthesized from docosahexaenoic acid: the Proctor Lecture.' (Bazan NG, 2007), Mouse Model are used in the study 'Omega-3 fatty acids EPA and DHA: health benefits throughout life.' (Swanson D et al., 2012), Mouse Model are used in the study 'Docosahexaenoic acid attenuates hepatic inflammation, oxidative stress, and fibrosis without decreasing hepatosteatosis in a Ldlr(-/-) mouse model of western diet-induced nonalcoholic steatohepatitis.' (Depner CM et al., 2013) and Mouse Model are used in the study 'Wax esters from the marine copepod Calanus finmarchicus reduce diet-induced obesity and obesity-related metabolic disorders in mice.' (Höper AC et al., 2014).

Transgenic Model

Transgenic Model are used in the study 'Loss of MAP function leads to hippocampal synapse loss and deficits in the Morris Water Maze with aging.' (Ma QL et al., 2014).

Animal Disease Models

Animal Disease Models are used in the study 'Fish oil increases muscle protein mass and modulates Akt/FOXO, TLR4, and NOD signaling in weanling piglets after lipopolysaccharide challenge.' (Liu Y et al., 2013).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with DHA

Download all related citations
Per page 10 20 50 100 | Total 7336
Authors Title Published Journal PubMed Link
Haines AP et al. Effects of a fish oil supplement on platelet function, haemostatic variables and albuminuria in insulin-dependent diabetics. 1986 Thromb. Res. pmid:3020732
Umemura K et al. Effect of dietary docosahexaenoic acid in the rat middle cerebral artery thrombosis model. 1995 Thromb. Res. pmid:7660354
Pöschl JM et al. Dietary docosahexaenoic acid improves red blood cell deformability in rats. 1996 Thromb. Res. pmid:8822144
Gaudette DC and Holub BJ Effect of albumin-bound DHA on phosphoinositide phosphorylation in collagen stimulated human platelets. 1990 Thromb. Res. pmid:2162088
Barcelli U et al. Enhancing effect of dietary supplementation with omega-3 fatty acids on plasma fibrinolysis in normal subjects. 1985 Thromb. Res. pmid:2996169
Bruckner GG et al. Biosynthesis of prostanoids, tissue fatty acid composition and thrombotic parameters in rats fed diets enriched with docosahexaenoic (22:6n3) or eicosapentaenoic (20:5n3) acids. 1984 Thromb. Res. pmid:6330927
Mundal HH et al. The effect of N-3 fatty acids and nifedipine on platelet function in hypertensive males. 1993 Thromb. Res. pmid:8303664
Conquer JA et al. Effect of supplementation with dietary seal oil on selected cardiovascular risk factors and hemostatic variables in healthy male subjects. 1999 Thromb. Res. pmid:10588467
Landmark K and Alm CS [Fish and omega-3 fatty acids and heart failure]. 2012 Tidsskr. Nor. Laegeforen. pmid:23736195
Weil A Why I still take my daily fish oil. 2006 Time pmid:16827433
Morisaki N et al. In vivo effects of cis-5,8,11,14,17-20:5 (n-3) and cis-4,7,10,13,16,19-22:6(n-3) on serum lipoproteins, platelet aggregation, and lipid metabolism in the aorta of rats. 1983 Tohoku J. Exp. Med. pmid:6322383
Munakata M et al. The nutrient formula containing eicosapentaenoic acid and docosahexaenoic acid benefits the fatty acid status of patients receiving long-term enteral nutrition. 2009 Tohoku J. Exp. Med. pmid:19155604
de Lima TM et al. Docosahexaenoic acid enhances the toxic effect of imatinib on Bcr-Abl expressing HL-60 cells. 2007 Toxicol In Vitro pmid:17604596
Azevedo-Martins AK et al. Fatty acid-induced toxicity and neutral lipid accumulation in insulin-producing RINm5F cells. 2006 Toxicol In Vitro pmid:16644178
Blum JL et al. Profiling of fatty acids released during calcium-induced mitochondrial permeability transition in isolated rabbit kidney cortex mitochondria. 2011 Toxicol In Vitro pmid:21443943
Türkez H et al. Ameliorative effect of docosahexaenoic acid on 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced histological changes, oxidative stress, and DNA damage in rat liver. 2012 Toxicol Ind Health pmid:21996711
Chen J et al. Aspirin-triggered resolvin D1 down-regulates inflammatory responses and protects against endotoxin-induced acute kidney injury. 2014 Toxicol. Appl. Pharmacol. pmid:24709673
Li CC et al. DHA down-regulates phenobarbital-induced cytochrome P450 2B1 gene expression in rat primary hepatocytes by attenuating CAR translocation. 2007 Toxicol. Appl. Pharmacol. pmid:17904175
Majkova Z et al. Omega-3 fatty acid oxidation products prevent vascular endothelial cell activation by coplanar polychlorinated biphenyls. 2011 Toxicol. Appl. Pharmacol. pmid:21130106
Nikolakopoulou Z et al. The induction of apoptosis in pre-malignant keratinocytes by omega-3 polyunsaturated fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) is inhibited by albumin. 2013 Toxicol. Lett. pmid:23391486