DHA

Dha is a lipid of Fatty Acyls (FA) class. Dha is associated with abnormalities such as Atherosclerosis, Consumption-archaic term for TB, Chronic disease, Cardiovascular Diseases and Diabetes Mellitus, Non-Insulin-Dependent. The involved functions are known as Inflammation, Oxidation, fatty acid oxidation, Fatty Acid Metabolism and Lipid Metabolism. Dha often locates in Hepatic, Protoplasm, Mucous Membrane, Epithelium and outer membrane. The associated genes with DHA are IMPACT gene, FATE1 gene, GAPDH gene, THOC4 gene and SLC33A1 gene. The related lipids are stearidonic acid, Fatty Acids, Total cholesterol, Lipopolysaccharides and Dietary Fatty Acid. The related experimental models are Mouse Model, Transgenic Model, Animal Disease Models and Arthritis, Experimental.

Cross Reference

Introduction

To understand associated biological information of DHA, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with DHA?

DHA is suspected in Cardiovascular Diseases, Obesity, Ischemia, Hypertensive disease, Coronary Arteriosclerosis, Cerebrovascular accident and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with DHA

MeSH term MeSH ID Detail
Abortion, Habitual D000026 5 associated lipids
Acquired Immunodeficiency Syndrome D000163 12 associated lipids
Adenocarcinoma D000230 166 associated lipids
Adrenoleukodystrophy D000326 29 associated lipids
Albinism D000417 3 associated lipids
Alzheimer Disease D000544 76 associated lipids
Anaphylaxis D000707 35 associated lipids
Anemia D000740 21 associated lipids
Anemia, Sickle Cell D000755 34 associated lipids
Angina Pectoris D000787 27 associated lipids
Angina, Unstable D000789 14 associated lipids
Hypoxia D000860 23 associated lipids
Aortic Diseases D001018 11 associated lipids
Arrhythmias, Cardiac D001145 42 associated lipids
Arteriosclerosis D001161 86 associated lipids
Arthus Reaction D001183 8 associated lipids
Asthma D001249 52 associated lipids
Asthma, Exercise-Induced D001250 10 associated lipids
Atrial Fibrillation D001281 16 associated lipids
Autoimmune Diseases D001327 27 associated lipids
Basal Ganglia Diseases D001480 8 associated lipids
Biliary Atresia D001656 4 associated lipids
Birth Weight D001724 23 associated lipids
Blister D001768 16 associated lipids
Body Weight D001835 333 associated lipids
Bone Diseases, Metabolic D001851 9 associated lipids
Brain Neoplasms D001932 15 associated lipids
Breast Neoplasms D001943 24 associated lipids
Burns D002056 34 associated lipids
Cachexia D002100 21 associated lipids
Carcinoma D002277 18 associated lipids
Carcinoma 256, Walker D002279 22 associated lipids
Cardiomyopathy, Dilated D002311 15 associated lipids
Catalepsy D002375 30 associated lipids
Cataract D002386 34 associated lipids
Cell Transformation, Neoplastic D002471 126 associated lipids
Central Nervous System Diseases D002493 10 associated lipids
Intracranial Arteriosclerosis D002537 4 associated lipids
Brain Ischemia D002545 89 associated lipids
Cerebrovascular Disorders D002561 25 associated lipids
Cholestasis D002779 23 associated lipids
Choline Deficiency D002796 16 associated lipids
Colitis D003092 69 associated lipids
Colonic Neoplasms D003110 161 associated lipids
Communication Disorders D003147 1 associated lipids
Coronary Artery Disease D003324 47 associated lipids
Coronary Disease D003327 70 associated lipids
Coronary Thrombosis D003328 7 associated lipids
Cystic Fibrosis D003550 65 associated lipids
Deficiency Diseases D003677 12 associated lipids
Dementia D003704 2 associated lipids
Dermatitis D003872 30 associated lipids
Dermatitis, Atopic D003876 19 associated lipids
Diabetes Mellitus D003920 90 associated lipids
Diabetes Mellitus, Experimental D003921 85 associated lipids
Diabetes Mellitus, Type 1 D003922 56 associated lipids
Diabetes Mellitus, Type 2 D003924 87 associated lipids
Diabetic Retinopathy D003930 39 associated lipids
Down Syndrome D004314 18 associated lipids
Dyskinesia, Drug-Induced D004409 15 associated lipids
Dyslexia D004410 3 associated lipids
Dysmenorrhea D004412 9 associated lipids
Edema D004487 152 associated lipids
Encephalomyelitis, Autoimmune, Experimental D004681 26 associated lipids
Epilepsy D004827 35 associated lipids
Erythema D004890 22 associated lipids
Eye Abnormalities D005124 7 associated lipids
Fatty Liver D005234 48 associated lipids
Fatty Liver, Alcoholic D005235 11 associated lipids
Fibrosis D005355 23 associated lipids
Glaucoma, Open-Angle D005902 3 associated lipids
Glioma D005910 112 associated lipids
Glomerulonephritis D005921 35 associated lipids
Glomerulonephritis, IGA D005922 7 associated lipids
Heart Defects, Congenital D006330 20 associated lipids
Cardiomegaly D006332 31 associated lipids
Heart Failure D006333 36 associated lipids
Hemolysis D006461 131 associated lipids
Hepatitis C D006526 7 associated lipids
Carcinoma, Hepatocellular D006528 140 associated lipids
Hydroa Vacciniforme D006837 1 associated lipids
Hypercholesterolemia D006937 91 associated lipids
Hyperlipoproteinemia Type II D006938 22 associated lipids
Hyperlipidemias D006949 73 associated lipids
Hyperlipidemia, Familial Combined D006950 9 associated lipids
Hyperlipoproteinemias D006951 15 associated lipids
Hyperlipoproteinemia Type IV D006953 6 associated lipids
Hypersensitivity D006967 22 associated lipids
Hypersensitivity, Delayed D006968 43 associated lipids
Hypertension D006973 115 associated lipids
Hypotension D007022 41 associated lipids
Hypothyroidism D007037 32 associated lipids
Infant, Premature, Diseases D007235 7 associated lipids
Inflammation D007249 119 associated lipids
Influenza, Human D007251 11 associated lipids
Insulin Resistance D007333 99 associated lipids
Intermittent Claudication D007383 6 associated lipids
Keratitis D007634 7 associated lipids
Kidney Diseases D007674 29 associated lipids
Kidney Failure, Chronic D007676 51 associated lipids
Per page 10 20 50 100 | Total 240

PubChem Associated disorders and diseases

What pathways are associated with DHA

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with DHA?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with DHA?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with DHA?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with DHA?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with DHA?

Mouse Model

Mouse Model are used in the study 'Homeostatic regulation of photoreceptor cell integrity: significance of the potent mediator neuroprotectin D1 biosynthesized from docosahexaenoic acid: the Proctor Lecture.' (Bazan NG, 2007), Mouse Model are used in the study 'Omega-3 fatty acids EPA and DHA: health benefits throughout life.' (Swanson D et al., 2012), Mouse Model are used in the study 'Docosahexaenoic acid attenuates hepatic inflammation, oxidative stress, and fibrosis without decreasing hepatosteatosis in a Ldlr(-/-) mouse model of western diet-induced nonalcoholic steatohepatitis.' (Depner CM et al., 2013) and Mouse Model are used in the study 'Wax esters from the marine copepod Calanus finmarchicus reduce diet-induced obesity and obesity-related metabolic disorders in mice.' (Höper AC et al., 2014).

Transgenic Model

Transgenic Model are used in the study 'Loss of MAP function leads to hippocampal synapse loss and deficits in the Morris Water Maze with aging.' (Ma QL et al., 2014).

Animal Disease Models

Animal Disease Models are used in the study 'Fish oil increases muscle protein mass and modulates Akt/FOXO, TLR4, and NOD signaling in weanling piglets after lipopolysaccharide challenge.' (Liu Y et al., 2013).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with DHA

Download all related citations
Per page 10 20 50 100 | Total 7336
Authors Title Published Journal PubMed Link
Lagarde M et al. Structure-function relationships of non-cyclic dioxygenase products from polyunsaturated fatty acids: poxytrins as a class of bioactive derivatives. 2014 Biochimie pmid:25223888
Gong J et al. Maresin 1 mitigates LPS-induced acute lung injury in mice. 2014 Br. J. Pharmacol. pmid:24697684
Li S et al. The targeting mechanism of DHA ligand and its conjugate with Gemcitabine for the enhanced tumor therapy. 2014 Oncotarget pmid:25004114
Marklund M et al. A dietary biomarker approach captures compliance and cardiometabolic effects of a healthy Nordic diet in individuals with metabolic syndrome. 2014 J. Nutr. pmid:25080537
Arafiles KH et al. Value-added lipid production from brown seaweed biomass by two-stage fermentation using acetic acid bacterium and thraustochytrid. 2014 Appl. Microbiol. Biotechnol. pmid:25086614
Koutsos A et al. Greater impact of dietary fat manipulation than apolipoprotein E genotype on ex vivo cytokine production - insights from the SATgenε study. 2014 Cytokine pmid:24485322
Norris JM et al. Erythrocyte membrane docosapentaenoic acid levels are associated with islet autoimmunity: the Diabetes Autoimmunity Study in the Young. 2014 Diabetologia pmid:24240437
Yamanushi TT et al. Oral administration of eicosapentaenoic acid or docosahexaenoic acid modifies cardiac function and ameliorates congestive heart failure in male rats. 2014 J. Nutr. pmid:24523492
Meagher KA et al. Regarding macular xanthophylls and ω-3 long-chain polyunsaturated fatty acids in age-related macular degeneration. 2014 JAMA Ophthalmol pmid:24525935
Sánchez-Reyes OB et al. Free fatty acids and protein kinase C activation induce GPR120 (free fatty acid receptor 4) phosphorylation. 2014 Eur. J. Pharmacol. pmid:24239485
Chen J et al. Aspirin-triggered resolvin D1 down-regulates inflammatory responses and protects against endotoxin-induced acute kidney injury. 2014 Toxicol. Appl. Pharmacol. pmid:24709673
Recchiuti A et al. Immunoresolving actions of oral resolvin D1 include selective regulation of the transcription machinery in resolution-phase mouse macrophages. 2014 FASEB J. pmid:24692596
Létondor A et al. Erythrocyte DHA level as a biomarker of DHA status in specific brain regions of n-3 long-chain PUFA-supplemented aged rats. 2014 Br. J. Nutr. pmid:25331622
Kermack AJ et al. A randomised controlled trial of a preconceptional dietary intervention in women undergoing IVF treatment (PREPARE trial). 2014 BMC Womens Health pmid:25407227
Wang JL et al. Preparation and characterization of novel lipid carriers containing microalgae oil for food applications. 2014 J. Food Sci. pmid:24446860
Giovannelli J et al. Validation of a short, qualitative food frequency questionnaire in French adults participating in the MONA LISA-NUT study 2005-2007. 2014 J Acad Nutr Diet pmid:24083967
Rius B et al. Resolvin D1 primes the resolution process initiated by calorie restriction in obesity-induced steatohepatitis. 2014 FASEB J. pmid:24249635
Choi EY et al. DHA suppresses Prevotella intermedia lipopolysaccharide-induced production of proinflammatory mediators in murine macrophages. 2014 Br. J. Nutr. pmid:24252501
Ponnampalam EN et al. Sources of variation of health claimable long chain omega-3 fatty acids in meat from Australian lamb slaughtered at similar weights. 2014 Meat Sci. pmid:23265412
Amiri-Jami M et al. Engineering of EPA/DHA omega-3 fatty acid production by Lactococcus lactis subsp. cremoris MG1363. 2014 Appl. Microbiol. Biotechnol. pmid:24389665