DHA

Dha is a lipid of Fatty Acyls (FA) class. Dha is associated with abnormalities such as Atherosclerosis, Consumption-archaic term for TB, Chronic disease, Cardiovascular Diseases and Diabetes Mellitus, Non-Insulin-Dependent. The involved functions are known as Inflammation, Oxidation, fatty acid oxidation, Fatty Acid Metabolism and Lipid Metabolism. Dha often locates in Hepatic, Protoplasm, Mucous Membrane, Epithelium and outer membrane. The associated genes with DHA are IMPACT gene, FATE1 gene, GAPDH gene, THOC4 gene and SLC33A1 gene. The related lipids are stearidonic acid, Fatty Acids, Total cholesterol, Lipopolysaccharides and Dietary Fatty Acid. The related experimental models are Mouse Model, Transgenic Model, Animal Disease Models and Arthritis, Experimental.

Cross Reference

Introduction

To understand associated biological information of DHA, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with DHA?

DHA is suspected in Cardiovascular Diseases, Obesity, Ischemia, Hypertensive disease, Coronary Arteriosclerosis, Cerebrovascular accident and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with DHA

MeSH term MeSH ID Detail
Abortion, Habitual D000026 5 associated lipids
Acquired Immunodeficiency Syndrome D000163 12 associated lipids
Adenocarcinoma D000230 166 associated lipids
Adrenoleukodystrophy D000326 29 associated lipids
Albinism D000417 3 associated lipids
Alzheimer Disease D000544 76 associated lipids
Anaphylaxis D000707 35 associated lipids
Anemia D000740 21 associated lipids
Anemia, Sickle Cell D000755 34 associated lipids
Angina Pectoris D000787 27 associated lipids
Angina, Unstable D000789 14 associated lipids
Hypoxia D000860 23 associated lipids
Aortic Diseases D001018 11 associated lipids
Arrhythmias, Cardiac D001145 42 associated lipids
Arteriosclerosis D001161 86 associated lipids
Arthus Reaction D001183 8 associated lipids
Asthma D001249 52 associated lipids
Asthma, Exercise-Induced D001250 10 associated lipids
Atrial Fibrillation D001281 16 associated lipids
Autoimmune Diseases D001327 27 associated lipids
Basal Ganglia Diseases D001480 8 associated lipids
Biliary Atresia D001656 4 associated lipids
Birth Weight D001724 23 associated lipids
Blister D001768 16 associated lipids
Body Weight D001835 333 associated lipids
Bone Diseases, Metabolic D001851 9 associated lipids
Brain Neoplasms D001932 15 associated lipids
Breast Neoplasms D001943 24 associated lipids
Burns D002056 34 associated lipids
Cachexia D002100 21 associated lipids
Carcinoma D002277 18 associated lipids
Carcinoma 256, Walker D002279 22 associated lipids
Cardiomyopathy, Dilated D002311 15 associated lipids
Catalepsy D002375 30 associated lipids
Cataract D002386 34 associated lipids
Cell Transformation, Neoplastic D002471 126 associated lipids
Central Nervous System Diseases D002493 10 associated lipids
Intracranial Arteriosclerosis D002537 4 associated lipids
Brain Ischemia D002545 89 associated lipids
Cerebrovascular Disorders D002561 25 associated lipids
Cholestasis D002779 23 associated lipids
Choline Deficiency D002796 16 associated lipids
Colitis D003092 69 associated lipids
Colonic Neoplasms D003110 161 associated lipids
Communication Disorders D003147 1 associated lipids
Coronary Artery Disease D003324 47 associated lipids
Coronary Disease D003327 70 associated lipids
Coronary Thrombosis D003328 7 associated lipids
Cystic Fibrosis D003550 65 associated lipids
Deficiency Diseases D003677 12 associated lipids
Dementia D003704 2 associated lipids
Dermatitis D003872 30 associated lipids
Dermatitis, Atopic D003876 19 associated lipids
Diabetes Mellitus D003920 90 associated lipids
Diabetes Mellitus, Experimental D003921 85 associated lipids
Diabetes Mellitus, Type 1 D003922 56 associated lipids
Diabetes Mellitus, Type 2 D003924 87 associated lipids
Diabetic Retinopathy D003930 39 associated lipids
Down Syndrome D004314 18 associated lipids
Dyskinesia, Drug-Induced D004409 15 associated lipids
Dyslexia D004410 3 associated lipids
Dysmenorrhea D004412 9 associated lipids
Edema D004487 152 associated lipids
Encephalomyelitis, Autoimmune, Experimental D004681 26 associated lipids
Epilepsy D004827 35 associated lipids
Erythema D004890 22 associated lipids
Eye Abnormalities D005124 7 associated lipids
Fatty Liver D005234 48 associated lipids
Fatty Liver, Alcoholic D005235 11 associated lipids
Fibrosis D005355 23 associated lipids
Glaucoma, Open-Angle D005902 3 associated lipids
Glioma D005910 112 associated lipids
Glomerulonephritis D005921 35 associated lipids
Glomerulonephritis, IGA D005922 7 associated lipids
Heart Defects, Congenital D006330 20 associated lipids
Cardiomegaly D006332 31 associated lipids
Heart Failure D006333 36 associated lipids
Hemolysis D006461 131 associated lipids
Hepatitis C D006526 7 associated lipids
Carcinoma, Hepatocellular D006528 140 associated lipids
Hydroa Vacciniforme D006837 1 associated lipids
Hypercholesterolemia D006937 91 associated lipids
Hyperlipoproteinemia Type II D006938 22 associated lipids
Hyperlipidemias D006949 73 associated lipids
Hyperlipidemia, Familial Combined D006950 9 associated lipids
Hyperlipoproteinemias D006951 15 associated lipids
Hyperlipoproteinemia Type IV D006953 6 associated lipids
Hypersensitivity D006967 22 associated lipids
Hypersensitivity, Delayed D006968 43 associated lipids
Hypertension D006973 115 associated lipids
Hypotension D007022 41 associated lipids
Hypothyroidism D007037 32 associated lipids
Infant, Premature, Diseases D007235 7 associated lipids
Inflammation D007249 119 associated lipids
Influenza, Human D007251 11 associated lipids
Insulin Resistance D007333 99 associated lipids
Intermittent Claudication D007383 6 associated lipids
Keratitis D007634 7 associated lipids
Kidney Diseases D007674 29 associated lipids
Kidney Failure, Chronic D007676 51 associated lipids
Per page 10 20 50 100 | Total 240

PubChem Associated disorders and diseases

What pathways are associated with DHA

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with DHA?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with DHA?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with DHA?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with DHA?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with DHA?

Mouse Model

Mouse Model are used in the study 'Homeostatic regulation of photoreceptor cell integrity: significance of the potent mediator neuroprotectin D1 biosynthesized from docosahexaenoic acid: the Proctor Lecture.' (Bazan NG, 2007), Mouse Model are used in the study 'Omega-3 fatty acids EPA and DHA: health benefits throughout life.' (Swanson D et al., 2012), Mouse Model are used in the study 'Docosahexaenoic acid attenuates hepatic inflammation, oxidative stress, and fibrosis without decreasing hepatosteatosis in a Ldlr(-/-) mouse model of western diet-induced nonalcoholic steatohepatitis.' (Depner CM et al., 2013) and Mouse Model are used in the study 'Wax esters from the marine copepod Calanus finmarchicus reduce diet-induced obesity and obesity-related metabolic disorders in mice.' (Höper AC et al., 2014).

Transgenic Model

Transgenic Model are used in the study 'Loss of MAP function leads to hippocampal synapse loss and deficits in the Morris Water Maze with aging.' (Ma QL et al., 2014).

Animal Disease Models

Animal Disease Models are used in the study 'Fish oil increases muscle protein mass and modulates Akt/FOXO, TLR4, and NOD signaling in weanling piglets after lipopolysaccharide challenge.' (Liu Y et al., 2013).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with DHA

Download all related citations
Per page 10 20 50 100 | Total 7336
Authors Title Published Journal PubMed Link
Keelan JA Letter to the editor: "fatty acids and placental transport: insight or in vitro artifact?". 2014 Am. J. Physiol., Cell Physiol. pmid:25452382
Torok VA et al. Influence of dietary docosahexaenoic acid supplementation on the overall rumen microbiota of dairy cows and linkages with production parameters. 2014 Can. J. Microbiol. pmid:24779577
Burns-Whitmore B et al. Effects of supplementing n-3 fatty acid enriched eggs and walnuts on cardiovascular disease risk markers in healthy free-living lacto-ovo-vegetarians: a randomized, crossover, free-living intervention study. 2014 Nutr J pmid:24673793
Martin CR et al. Resolvin D1 and lipoxin A4 improve alveolarization and normalize septal wall thickness in a neonatal murine model of hyperoxia-induced lung injury. 2014 PLoS ONE pmid:24892762
Makrides M et al. Four-year follow-up of children born to women in a randomized trial of prenatal DHA supplementation. 2014 JAMA pmid:24794375
Ramon S et al. The specialized proresolving mediator 17-HDHA enhances the antibody-mediated immune response against influenza virus: a new class of adjuvant? 2014 J. Immunol. pmid:25392529
Hughbanks-Wheaton DK et al. Safety assessment of docosahexaenoic acid in X-linked retinitis pigmentosa: the 4-year DHAX trial. 2014 Invest. Ophthalmol. Vis. Sci. pmid:25015354
Velten M et al. Maternal dietary docosahexaenoic acid supplementation attenuates fetal growth restriction and enhances pulmonary function in a newborn mouse model of perinatal inflammation. 2014 J. Nutr. pmid:24453131
Mereghetti P et al. A Fourier transform infrared spectroscopy study of cell membrane domain modifications induced by docosahexaenoic acid. 2014 Biochim. Biophys. Acta pmid:25018005
Lager S et al. Differential regulation of placental amino acid transport by saturated and unsaturated fatty acids. 2014 Am. J. Physiol., Cell Physiol. pmid:25143349
Sato K et al. Pharmacological evidence showing significant roles for potassium channels and CYP epoxygenase metabolites in the relaxant effects of docosahexaenoic acid on the rat aorta contracted with U46619. 2014 Biol. Pharm. Bull. pmid:24369179
Nishinaka T et al. Involvement of the long-chain fatty acid receptor GPR40 in depression-related behavior. 2014 J. Pharmacol. Sci. pmid:24758921
Nagao K et al. Comparison of the lipid-lowering effects of four different n-3 highly unsaturated fatty acids in HepG2 cells. 2014 J Oleo Sci pmid:25213447
Taltavull N et al. Eicosapentaenoic acid/docosahexaenoic acid 1:1 ratio improves histological alterations in obese rats with metabolic syndrome. 2014 Lipids Health Dis pmid:24512213
Nanjappa D et al. Oxylipin diversity in the diatom family Leptocylindraceae reveals DHA derivatives in marine diatoms. 2014 Mar Drugs pmid:24445306
Levy BD and Serhan CN Resolution of acute inflammation in the lung. 2014 Annu. Rev. Physiol. pmid:24313723
Sertoglu E et al. Comparison of plasma and erythrocyte membrane fatty acid compositions in patients with end-stage renal disease and type 2 diabetes mellitus. 2014 Chem. Phys. Lipids pmid:24384240
Stoffel W et al. Obesity resistance and deregulation of lipogenesis in Δ6-fatty acid desaturase (FADS2) deficiency. 2014 EMBO Rep. pmid:24378641
Luxwolda MF et al. Interrelationships between maternal DHA in erythrocytes, milk and adipose tissue. Is 1 wt% DHA the optimal human milk content? Data from four Tanzanian tribes differing in lifetime stable intakes of fish. 2014 Br. J. Nutr. pmid:24175990
Hixson SM et al. Changes in tissue lipid and fatty acid composition of farmed rainbow trout in response to dietary camelina oil as a replacement of fish oil. 2014 Lipids pmid:24264359