DHA

Dha is a lipid of Fatty Acyls (FA) class. Dha is associated with abnormalities such as Atherosclerosis, Consumption-archaic term for TB, Chronic disease, Cardiovascular Diseases and Diabetes Mellitus, Non-Insulin-Dependent. The involved functions are known as Inflammation, Oxidation, fatty acid oxidation, Fatty Acid Metabolism and Lipid Metabolism. Dha often locates in Hepatic, Protoplasm, Mucous Membrane, Epithelium and outer membrane. The associated genes with DHA are IMPACT gene, FATE1 gene, GAPDH gene, THOC4 gene and SLC33A1 gene. The related lipids are stearidonic acid, Fatty Acids, Total cholesterol, Lipopolysaccharides and Dietary Fatty Acid. The related experimental models are Mouse Model, Transgenic Model, Animal Disease Models and Arthritis, Experimental.

Cross Reference

Introduction

To understand associated biological information of DHA, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with DHA?

DHA is suspected in Cardiovascular Diseases, Obesity, Ischemia, Hypertensive disease, Coronary Arteriosclerosis, Cerebrovascular accident and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with DHA

MeSH term MeSH ID Detail
Hemolysis D006461 131 associated lipids
Stomach Ulcer D013276 75 associated lipids
Kidney Failure, Chronic D007676 51 associated lipids
Diabetes Mellitus D003920 90 associated lipids
Hypoxia D000860 23 associated lipids
Arrhythmias, Cardiac D001145 42 associated lipids
Neovascularization, Pathologic D009389 39 associated lipids
Adenocarcinoma D000230 166 associated lipids
Breast Neoplasms D001943 24 associated lipids
Pain D010146 64 associated lipids
Autoimmune Diseases D001327 27 associated lipids
Lupus Erythematosus, Systemic D008180 43 associated lipids
Lung Diseases D008171 37 associated lipids
Lung Neoplasms D008175 171 associated lipids
Pulmonary Fibrosis D011658 24 associated lipids
Burns D002056 34 associated lipids
Pancreatic Neoplasms D010190 77 associated lipids
Inflammation D007249 119 associated lipids
Reperfusion Injury D015427 65 associated lipids
Colitis D003092 69 associated lipids
Colonic Neoplasms D003110 161 associated lipids
Diabetes Mellitus, Type 1 D003922 56 associated lipids
Diabetes Mellitus, Type 2 D003924 87 associated lipids
Diabetic Retinopathy D003930 39 associated lipids
Fatty Liver D005234 48 associated lipids
Cataract D002386 34 associated lipids
Diabetes Mellitus, Experimental D003921 85 associated lipids
Mammary Neoplasms, Experimental D008325 67 associated lipids
Body Weight D001835 333 associated lipids
Edema D004487 152 associated lipids
Precancerous Conditions D011230 48 associated lipids
Carcinoma D002277 18 associated lipids
Hypotension D007022 41 associated lipids
Acute Kidney Injury D058186 34 associated lipids
Dementia D003704 2 associated lipids
Heart Failure D006333 36 associated lipids
Coronary Disease D003327 70 associated lipids
Prostatic Neoplasms D011471 126 associated lipids
Hypersensitivity D006967 22 associated lipids
Brain Neoplasms D001932 15 associated lipids
Hypothyroidism D007037 32 associated lipids
Vision Disorders D014786 10 associated lipids
Melanoma D008545 69 associated lipids
Pain, Postoperative D010149 13 associated lipids
Asthma D001249 52 associated lipids
Kidney Diseases D007674 29 associated lipids
Weight Gain D015430 101 associated lipids
Hypersensitivity, Delayed D006968 43 associated lipids
Glioma D005910 112 associated lipids
Cell Transformation, Neoplastic D002471 126 associated lipids
Per page 10 20 50 100 | Total 240

PubChem Associated disorders and diseases

What pathways are associated with DHA

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with DHA?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with DHA?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with DHA?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with DHA?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with DHA?

Mouse Model

Mouse Model are used in the study 'Homeostatic regulation of photoreceptor cell integrity: significance of the potent mediator neuroprotectin D1 biosynthesized from docosahexaenoic acid: the Proctor Lecture.' (Bazan NG, 2007), Mouse Model are used in the study 'Omega-3 fatty acids EPA and DHA: health benefits throughout life.' (Swanson D et al., 2012), Mouse Model are used in the study 'Docosahexaenoic acid attenuates hepatic inflammation, oxidative stress, and fibrosis without decreasing hepatosteatosis in a Ldlr(-/-) mouse model of western diet-induced nonalcoholic steatohepatitis.' (Depner CM et al., 2013) and Mouse Model are used in the study 'Wax esters from the marine copepod Calanus finmarchicus reduce diet-induced obesity and obesity-related metabolic disorders in mice.' (Höper AC et al., 2014).

Transgenic Model

Transgenic Model are used in the study 'Loss of MAP function leads to hippocampal synapse loss and deficits in the Morris Water Maze with aging.' (Ma QL et al., 2014).

Animal Disease Models

Animal Disease Models are used in the study 'Fish oil increases muscle protein mass and modulates Akt/FOXO, TLR4, and NOD signaling in weanling piglets after lipopolysaccharide challenge.' (Liu Y et al., 2013).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with DHA

Download all related citations
Per page 10 20 50 100 | Total 7336
Authors Title Published Journal PubMed Link
Lehmann C et al. Lipoxin and resolvin biosynthesis is dependent on 5-lipoxygenase activating protein. 2015 FASEB J. pmid:26289316
Taylan A et al. S1000A12, Chitotriosidase, and Resolvin D1 as Potential Biomarkers of Familial Mediterranean Fever. 2015 J. Korean Med. Sci. pmid:26339162
Qin Y et al. Fish Oil Supplements Lower Serum Lipids and Glucose in Correlation with a Reduction in Plasma Fibroblast Growth Factor 21 and Prostaglandin E2 in Nonalcoholic Fatty Liver Disease Associated with Hyperlipidemia: A Randomized Clinical Trial. 2015 PLoS ONE pmid:26226139
Orr SK et al. Proresolving actions of a new resolvin D1 analog mimetic qualifies as an immunoresolvent. 2015 Am. J. Physiol. Lung Cell Mol. Physiol. pmid:25770181
Rossi S et al. Protection from endotoxic uveitis by intravitreal Resolvin D1: involvement of lymphocytes, miRNAs, ubiquitin-proteasome, and M1/M2 macrophages. 2015 Mediators Inflamm. pmid:25684860
Calandria JM et al. The Docosanoid Neuroprotectin D1 Induces TH-Positive Neuronal Survival in a Cellular Model of Parkinson's Disease. 2015 Cell. Mol. Neurobiol. pmid:26047923
Suo R et al. Generation of Tetracosahexaenoic Acid in Benthic Marine Organisms. 2015 J Oleo Sci pmid:26136172
Park CK Maresin 1 Inhibits TRPV1 in Temporomandibular Joint-Related Trigeminal Nociceptive Neurons and TMJ Inflammation-Induced Synaptic Plasticity in the Trigeminal Nucleus. 2015 Mediators Inflamm. pmid:26617436
Amminger GP et al. Predictors of treatment response in young people at ultra-high risk for psychosis who received long-chain omega-3 fatty acids. 2015 Transl Psychiatry pmid:25585167
Nury T et al. Induction of oxiapoptophagy on 158N murine oligodendrocytes treated by 7-ketocholesterol-, 7β-hydroxycholesterol-, or 24(S)-hydroxycholesterol: Protective effects of α-tocopherol and docosahexaenoic acid (DHA; C22:6 n-3). 2015 Steroids pmid:25683890
Norris SE et al. Human prefrontal cortex phospholipids containing docosahexaenoic acid increase during normal adult aging, whereas those containing arachidonic acid decrease. 2015 Neurobiol. Aging pmid:25676385
Filipcikova R et al. Lycopene improves the distorted ratio between AA/DHA in the seminal plasma of infertile males and increases the likelihood of successful pregnancy. 2015 Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub pmid:23446211
Li R et al. Enzymatic Synthesis of Refined Olive Oil-Based Structured Lipid Containing Omega -3 and -6 Fatty Acids for Potential Application in Infant Formula. 2015 J. Food Sci. pmid:26408984
Wendell SG et al. 15-Hydroxyprostaglandin dehydrogenase generation of electrophilic lipid signaling mediators from hydroxy ω-3 fatty acids. 2015 J. Biol. Chem. pmid:25586183
Linhartova P and Sampels S Combined incubation of cadmium, docosahexaenoic and eicosapentaenoic acid results in increased uptake of cadmium and elevated docosapentaenoic acid content in hepatocytes in vitro. 2015 Lipids Health Dis pmid:26627047
Schwager J et al. ω-3 PUFAs and Resveratrol Differently Modulate Acute and Chronic Inflammatory Processes. 2015 Biomed Res Int pmid:26301248
Katakura M et al. Chronic Arachidonic Acid Administration Decreases Docosahexaenoic Acid- and Eicosapentaenoic Acid-Derived Metabolites in Kidneys of Aged Rats. 2015 PLoS ONE pmid:26485038
Ross AB et al. Herring and Beef Meals Lead to Differences in Plasma 2-Aminoadipic Acid, β-Alanine, 4-Hydroxyproline, Cetoleic Acid, and Docosahexaenoic Acid Concentrations in Overweight Men. 2015 J. Nutr. pmid:26400963
Zgorzynska E et al. Docosahexaenoic acid attenuates oxidative stress and protects human gingival fibroblasts against cytotoxicity induced by hydrogen peroxide and butyric acid. 2015 Arch. Oral Biol. pmid:25455128
Kawakami Y et al. Flaxseed oil intake reduces serum small dense low-density lipoprotein concentrations in Japanese men: a randomized, double blind, crossover study. 2015 Nutr J pmid:25896182