DHA

Dha is a lipid of Fatty Acyls (FA) class. Dha is associated with abnormalities such as Atherosclerosis, Consumption-archaic term for TB, Chronic disease, Cardiovascular Diseases and Diabetes Mellitus, Non-Insulin-Dependent. The involved functions are known as Inflammation, Oxidation, fatty acid oxidation, Fatty Acid Metabolism and Lipid Metabolism. Dha often locates in Hepatic, Protoplasm, Mucous Membrane, Epithelium and outer membrane. The associated genes with DHA are IMPACT gene, FATE1 gene, GAPDH gene, THOC4 gene and SLC33A1 gene. The related lipids are stearidonic acid, Fatty Acids, Total cholesterol, Lipopolysaccharides and Dietary Fatty Acid. The related experimental models are Mouse Model, Transgenic Model, Animal Disease Models and Arthritis, Experimental.

Cross Reference

Introduction

To understand associated biological information of DHA, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with DHA?

DHA is suspected in Cardiovascular Diseases, Obesity, Ischemia, Hypertensive disease, Coronary Arteriosclerosis, Cerebrovascular accident and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with DHA

MeSH term MeSH ID Detail
Hemolysis D006461 131 associated lipids
Stomach Ulcer D013276 75 associated lipids
Kidney Failure, Chronic D007676 51 associated lipids
Diabetes Mellitus D003920 90 associated lipids
Hypoxia D000860 23 associated lipids
Arrhythmias, Cardiac D001145 42 associated lipids
Neovascularization, Pathologic D009389 39 associated lipids
Adenocarcinoma D000230 166 associated lipids
Breast Neoplasms D001943 24 associated lipids
Pain D010146 64 associated lipids
Per page 10 20 50 100 | Total 240

PubChem Associated disorders and diseases

What pathways are associated with DHA

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with DHA?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with DHA?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with DHA?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with DHA?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with DHA?

Mouse Model

Mouse Model are used in the study 'Homeostatic regulation of photoreceptor cell integrity: significance of the potent mediator neuroprotectin D1 biosynthesized from docosahexaenoic acid: the Proctor Lecture.' (Bazan NG, 2007), Mouse Model are used in the study 'Omega-3 fatty acids EPA and DHA: health benefits throughout life.' (Swanson D et al., 2012), Mouse Model are used in the study 'Docosahexaenoic acid attenuates hepatic inflammation, oxidative stress, and fibrosis without decreasing hepatosteatosis in a Ldlr(-/-) mouse model of western diet-induced nonalcoholic steatohepatitis.' (Depner CM et al., 2013) and Mouse Model are used in the study 'Wax esters from the marine copepod Calanus finmarchicus reduce diet-induced obesity and obesity-related metabolic disorders in mice.' (Höper AC et al., 2014).

Transgenic Model

Transgenic Model are used in the study 'Loss of MAP function leads to hippocampal synapse loss and deficits in the Morris Water Maze with aging.' (Ma QL et al., 2014).

Animal Disease Models

Animal Disease Models are used in the study 'Fish oil increases muscle protein mass and modulates Akt/FOXO, TLR4, and NOD signaling in weanling piglets after lipopolysaccharide challenge.' (Liu Y et al., 2013).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with DHA

Download all related citations
Per page 10 20 50 100 | Total 7336
Authors Title Published Journal PubMed Link
Amann-Gassner U and Hastreiter L [Nutrition during pregnancy]. 2012 MMW Fortschr Med pmid:22352251
Siriwardhana N et al. Health benefits of n-3 polyunsaturated fatty acids: eicosapentaenoic acid and docosahexaenoic acid. 2012 Adv. Food Nutr. Res. pmid:22361189
Ayas D et al. The effects of season and sex on fat, fatty acids and protein contents of Sepia officinalis in the northeastern Mediterranean Sea. 2012 Int J Food Sci Nutr pmid:22106841
Murphy RA et al. n-3 polyunsaturated fatty acids: the potential role for supplementation in cancer. 2012 Curr Opin Clin Nutr Metab Care pmid:22366922
Larsen BM et al. Pre-treatment with an intravenous lipid emulsion containing fish oil (eicosapentaenoic and docosahexaenoic acid) decreases inflammatory markers after open-heart surgery in infants: a randomized, controlled trial. 2012 Clin Nutr pmid:22136963
Itoyama A et al. Docosahexaenoic acid mediates peroxisomal elongation, a prerequisite for peroxisome division. 2012 J. Cell. Sci. pmid:22389399
Phang M et al. Acute supplementation with eicosapentaenoic acid reduces platelet microparticle activity in healthy subjects. 2012 J. Nutr. Biochem. pmid:22137256
Zhang MJ and Spite M Resolvins: anti-inflammatory and proresolving mediators derived from omega-3 polyunsaturated fatty acids. 2012 Annu. Rev. Nutr. pmid:22404117
Eady TN et al. Docosahexaenoic acid signaling modulates cell survival in experimental ischemic stroke penumbra and initiates long-term repair in young and aged rats. 2012 PLoS ONE pmid:23118851
Jørgensen MH et al. Long-chain PUFA in granulocytes, mononuclear cells, and RBC in patients with cystic fibrosis: relation to liver disease. 2012 J. Pediatr. Gastroenterol. Nutr. pmid:22241510
Galli C et al. Bioequivalence of two omega-3 fatty acid ethyl ester formulations: a case of clinical pharmacology of dietary supplements. 2012 Br J Clin Pharmacol pmid:22242645
Fedor DM et al. Docosahexaenoic acid prevents trans-10, cis-12-conjugated linoleic acid-induced nonalcoholic fatty liver disease in mice by altering expression of hepatic genes regulating fatty acid synthesis and oxidation. 2012 Metab Syndr Relat Disord pmid:22242926
Gutiérrez-Mata AP et al. [Neurological, neuropsychological, and ophthalmological evolution after one year of docosahexaenoic acid supplementation in phenylketonuric patients]. 2012 Rev Neurol pmid:22829083
Lockyer S et al. SATgenε dietary model to implement diets of differing fat composition in prospectively genotyped groups (apoE) using commercially available foods. 2012 Br. J. Nutr. pmid:22243632
Peyronnet R et al. Mechanoprotection by polycystins against apoptosis is mediated through the opening of stretch-activated K(2P) channels. 2012 Cell Rep pmid:22832196
Brown SP et al. Discovery of AM-1638: A Potent and Orally Bioavailable GPR40/FFA1 Full Agonist. 2012 ACS Med Chem Lett pmid:24900539
Kitson AP et al. Tissue-specific sex differences in docosahexaenoic acid and Δ6-desaturase in rats fed a standard chow diet. 2012 Appl Physiol Nutr Metab pmid:23050796
Quan-Xin F et al. Resolvin D1 reverses chronic pancreatitis-induced mechanical allodynia, phosphorylation of NMDA receptors, and cytokines expression in the thoracic spinal dorsal horn. 2012 BMC Gastroenterol pmid:23092159
Ritter JC and Budge SM Key lipid oxidation products can be used to predict sensory quality of fish oils with different levels of EPA and DHA. 2012 Lipids pmid:23096224
Jackson KG et al. Dietary fat manipulation has a greater impact on postprandial lipid metabolism than the apolipoprotein E (epsilon) genotype-insights from the SATgenε study. 2012 Mol Nutr Food Res pmid:23097177
Burillo E et al. Omega-3 fatty acids and HDL. How do they work in the prevention of cardiovascular disease? 2012 Curr Vasc Pharmacol pmid:22339302
Serhan CN et al. Macrophage proresolving mediator maresin 1 stimulates tissue regeneration and controls pain. 2012 FASEB J. pmid:22253477
Sundrani DP et al. Matrix metalloproteinase-1 and -9 in human placenta during spontaneous vaginal delivery and caesarean sectioning in preterm pregnancy. 2012 PLoS ONE pmid:22253805
Tian H et al. 14S,21R-dihydroxy-docosahexaenoic acid treatment enhances mesenchymal stem cell amelioration of renal ischemia/reperfusion injury. 2012 Stem Cells Dev. pmid:21846180
Norris PC and Dennis EA Omega-3 fatty acids cause dramatic changes in TLR4 and purinergic eicosanoid signaling. 2012 Proc. Natl. Acad. Sci. U.S.A. pmid:22586114
Martin N et al. Primary human airway epithelial cell-dependent inhibition of human lung mast cell degranulation. 2012 PLoS ONE pmid:22970103
Richardson AJ et al. Docosahexaenoic acid for reading, cognition and behavior in children aged 7-9 years: a randomized, controlled trial (the DOLAB Study). 2012 PLoS ONE pmid:22970149
Rasti B et al. Comparative study of the oxidative and physical stability of liposomal and nanoliposomal polyunsaturated fatty acids prepared with conventional and Mozafari methods. 2012 Food Chem pmid:22980870
Moore RL et al. Oxidative stability of an extended shelf-life dairy-based beverage system designed to contribute to heart health. 2012 J. Dairy Sci. pmid:22981572
Valentine CJ Maternal dietary DHA supplementation to improve inflammatory outcomes in the preterm infant. 2012 Adv Nutr pmid:22585914
Yakunin E et al. Α-synuclein neuropathology is controlled by nuclear hormone receptors and enhanced by docosahexaenoic acid in a mouse model for Parkinson's disease. 2012 Brain Pathol. pmid:21929559
Chen HF and Su HM Fish oil supplementation of maternal rats on an n-3 fatty acid-deficient diet prevents depletion of maternal brain regional docosahexaenoic acid levels and has a postpartum anxiolytic effect. 2012 J. Nutr. Biochem. pmid:21543216
Alessandri JM et al. Influence of gender on DHA synthesis: the response of rat liver to low dietary α-linolenic acid evidences higher ω3 ∆4-desaturation index in females. 2012 Eur J Nutr pmid:21647669
Ramon S et al. Specialized proresolving mediators enhance human B cell differentiation to antibody-secreting cells. 2012 J. Immunol. pmid:22711890
Connor S et al. DHA supplementation enhances high-frequency, stimulation-induced synaptic transmission in mouse hippocampus. 2012 Appl Physiol Nutr Metab pmid:22716290
Angulo J et al. Effects of polyunsaturated fatty acids from plant oils and algae on milk fat yield and composition are associated with mammary lipogenic and SREBF1 gene expression. 2012 Animal pmid:22717104
de Goede J et al. Gender-specific associations of marine n-3 fatty acids and fish consumption with 10-year incidence of stroke. 2012 PLoS ONE pmid:22496770
Huang LT et al. Fatty acid composition of 12 fish species from the Black Sea. 2012 J. Food Sci. pmid:22497457
Turan D et al. Production of human milk fat analogue containing docosahexaenoic and arachidonic acids. 2012 J. Agric. Food Chem. pmid:22497589
Sczaniecka AK et al. Dietary intake of specific fatty acids and breast cancer risk among postmenopausal women in the VITAL cohort. 2012 Nutr Cancer pmid:23137008
Jiang LH et al. Pure docosahexaenoic acid can improve depression behaviors and affect HPA axis in mice. 2012 Eur Rev Med Pharmacol Sci pmid:23208960
Sigal LH Basic science for the clinician 59: polymorphonuclear cells: mechanisms in human defense and in the pathogenesis of autoimmune disease. 2012 J Clin Rheumatol pmid:23211587
Das UN Is multiple sclerosis a proresolution deficiency disorder? 2012 Nutrition pmid:22521616
Zheng JS et al. Low docosahexaenoic acid content in plasma phospholipids is associated with increased non-alcoholic fatty liver disease in China. 2012 Lipids pmid:22527845
Patterson AC et al. Biomarker and dietary validation of a Canadian food frequency questionnaire to measure eicosapentaenoic and docosahexaenoic acid intakes from whole food, functional food, and nutraceutical sources. 2012 J Acad Nutr Diet pmid:22583924
Balakumar P and Taneja G Fish oil and vascular endothelial protection: bench to bedside. 2012 Free Radic. Biol. Med. pmid:22584102
Mandal CC et al. miR-21 is targeted by omega-3 polyunsaturated fatty acid to regulate breast tumor CSF-1 expression. 2012 Carcinogenesis pmid:22678116
Rossmeisl M et al. Metabolic effects of n-3 PUFA as phospholipids are superior to triglycerides in mice fed a high-fat diet: possible role of endocannabinoids. 2012 PLoS ONE pmid:22701720
Xiong A et al. Distinct roles of different forms of vitamin E in DHA-induced apoptosis in triple-negative breast cancer cells. 2012 Mol Nutr Food Res pmid:22707267
Settimio R et al. Resolvin D1 reduces the immunoinflammatory response of the rat eye following uveitis. 2012 Mediators Inflamm. pmid:23304060