DHA

Dha is a lipid of Fatty Acyls (FA) class. Dha is associated with abnormalities such as Atherosclerosis, Consumption-archaic term for TB, Chronic disease, Cardiovascular Diseases and Diabetes Mellitus, Non-Insulin-Dependent. The involved functions are known as Inflammation, Oxidation, fatty acid oxidation, Fatty Acid Metabolism and Lipid Metabolism. Dha often locates in Hepatic, Protoplasm, Mucous Membrane, Epithelium and outer membrane. The associated genes with DHA are IMPACT gene, FATE1 gene, GAPDH gene, THOC4 gene and SLC33A1 gene. The related lipids are stearidonic acid, Fatty Acids, Total cholesterol, Lipopolysaccharides and Dietary Fatty Acid. The related experimental models are Mouse Model, Transgenic Model, Animal Disease Models and Arthritis, Experimental.

Cross Reference

Introduction

To understand associated biological information of DHA, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with DHA?

DHA is suspected in Cardiovascular Diseases, Obesity, Ischemia, Hypertensive disease, Coronary Arteriosclerosis, Cerebrovascular accident and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with DHA

MeSH term MeSH ID Detail
Hemolysis D006461 131 associated lipids
Stomach Ulcer D013276 75 associated lipids
Kidney Failure, Chronic D007676 51 associated lipids
Diabetes Mellitus D003920 90 associated lipids
Hypoxia D000860 23 associated lipids
Arrhythmias, Cardiac D001145 42 associated lipids
Neovascularization, Pathologic D009389 39 associated lipids
Adenocarcinoma D000230 166 associated lipids
Breast Neoplasms D001943 24 associated lipids
Pain D010146 64 associated lipids
Per page 10 20 50 100 | Total 240

PubChem Associated disorders and diseases

What pathways are associated with DHA

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with DHA?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with DHA?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with DHA?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with DHA?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with DHA?

Mouse Model

Mouse Model are used in the study 'Homeostatic regulation of photoreceptor cell integrity: significance of the potent mediator neuroprotectin D1 biosynthesized from docosahexaenoic acid: the Proctor Lecture.' (Bazan NG, 2007), Mouse Model are used in the study 'Omega-3 fatty acids EPA and DHA: health benefits throughout life.' (Swanson D et al., 2012), Mouse Model are used in the study 'Docosahexaenoic acid attenuates hepatic inflammation, oxidative stress, and fibrosis without decreasing hepatosteatosis in a Ldlr(-/-) mouse model of western diet-induced nonalcoholic steatohepatitis.' (Depner CM et al., 2013) and Mouse Model are used in the study 'Wax esters from the marine copepod Calanus finmarchicus reduce diet-induced obesity and obesity-related metabolic disorders in mice.' (Höper AC et al., 2014).

Transgenic Model

Transgenic Model are used in the study 'Loss of MAP function leads to hippocampal synapse loss and deficits in the Morris Water Maze with aging.' (Ma QL et al., 2014).

Animal Disease Models

Animal Disease Models are used in the study 'Fish oil increases muscle protein mass and modulates Akt/FOXO, TLR4, and NOD signaling in weanling piglets after lipopolysaccharide challenge.' (Liu Y et al., 2013).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with DHA

Download all related citations
Per page 10 20 50 100 | Total 7336
Authors Title Published Journal PubMed Link
pmid:26638987
Gao J et al. Neuroprotective effects of docosahexaenoic acid on hippocampal cell death and learning and memory impairments in a valproic acid-induced rat autism model. 2016 Int. J. Dev. Neurosci. pmid:26639559
pmid:26640797
pmid:26642316
pmid:26646031
pmid:26646102
Abdulnour RE et al. Aspirin-triggered resolvin D1 is produced during self-resolving gram-negative bacterial pneumonia and regulates host immune responses for the resolution of lung inflammation. 2016 Mucosal Immunol pmid:26647716
pmid:26655290
Wang ZQ et al. Docosahexaenoic Acid Attenuates Doxorubicin-induced Cytotoxicity and Inflammation by Suppressing NF-κB/iNOS/NO Signaling Pathway Activation in H9C2 Cardiac Cells. 2016 J. Cardiovasc. Pharmacol. pmid:26657886
pmid:26658738
pmid:26658812
pmid:26662260
pmid:26662863
Berge RK et al. Krill oil reduces plasma triacylglycerol level and improves related lipoprotein particle concentration, fatty acid composition and redox status in healthy young adults - a pilot study. 2015 Lipids Health Dis pmid:26666303
Wang CW et al. Maresin 1 Biosynthesis and Proresolving Anti-infective Functions with Human-Localized Aggressive Periodontitis Leukocytes. 2015 Infect. Immun. pmid:26667839
pmid:26671842
Gupta AK et al. Double-blind, placebo-controlled study to evaluate the efficacy of fish oil and low-dose UVB in the treatment of psoriasis. 1989 Br. J. Dermatol. pmid:2667615
pmid:26679630
pmid:26682998
pmid:26683215
pmid:26685193
pmid:26687697
pmid:26687809
pmid:26689718
pmid:26690180
pmid:26694605
pmid:26697137
pmid:26697998
Liu Y et al. Resolvin D1 protects against inflammation in experimental acute pancreatitis and associated lung injury. 2016 Am. J. Physiol. Gastrointest. Liver Physiol. pmid:26702138
pmid:26703213
pmid:26705667
pmid:26707342
pmid:26707393
pmid:26709472
Lu Y et al. Impedance spectroscopy analysis of human odorant binding proteins immobilized on nanopore arrays for biochemical detection. 2016 Biosens Bioelectron pmid:26710343
pmid:26710988
pmid:26714774
López-Luna P et al. Fate of orally administered radioactive fatty acids in the late-pregnant rat. 2016 Am. J. Physiol. Endocrinol. Metab. pmid:26714850
pmid:26715431
pmid:26718448
pmid:26724495
pmid:26739870
pmid:26740205
pmid:26742060
pmid:26742061
Abeywardena MY et al. Rise in DPA Following SDA-Rich Dietary Echium Oil Less Effective in Affording Anti-Arrhythmic Actions Compared to High DHA Levels Achieved with Fish Oil in Sprague-Dawley Rats. 2016 Nutrients pmid:26742064
Cerf ME and Herrera E High Fat Diet Administration during Specific Periods of Pregnancy Alters Maternal Fatty Acid Profiles in the Near-Term Rat. 2016 Nutrients pmid:26742067
pmid:26743932
Jory J Abnormal fatty acids in Canadian children with autism. 2016 Nutrition pmid:26746679
pmid:26747719
pmid:26748347
pmid:26749585
pmid:26750093
pmid:26751068
pmid:26751734
pmid:26753861
pmid:26754345
pmid:26758373
pmid:26761122
pmid:26763196
pmid:26763232
Liu Q et al. Dietary n-6:n-3 ratio and Vitamin E improve motility characteristics in association with membrane properties of boar spermatozoa. 2017 Mar-Apr Asian J. Androl. pmid:26763547
pmid:26765633
Bassuk SS et al. Baseline characteristics of participants in the VITamin D and OmegA-3 TriaL (VITAL). 2016 Contemp Clin Trials pmid:26767629
pmid:26771636
pmid:26774753
pmid:26776055
pmid:26776249
pmid:26780261
pmid:26782308
Gold DR et al. Lung VITAL: Rationale, design, and baseline characteristics of an ancillary study evaluating the effects of vitamin D and/or marine omega-3 fatty acid supplements on acute exacerbations of chronic respiratory disease, asthma control, pneumonia and lung function in adults. 2016 Contemp Clin Trials pmid:26784651
pmid:26790145
pmid:26791554
Georgieva R et al. Phospholipase A2-Induced Remodeling Processes on Liquid-Ordered/Liquid-Disordered Membranes Containing Docosahexaenoic or Oleic Acid: A Comparison Study. 2016 Langmuir pmid:26794691
pmid:26796668
Seeger DR and Murphy EJ Mouse Strain Impacts Fatty Acid Uptake and Trafficking in Liver, Heart, and Brain: A Comparison of C57BL/6 and Swiss Webster Mice. 2016 Lipids pmid:26797754
pmid:26802936
pmid:26802937
Qin X et al. Brown but not white adipose cells synthesize omega-3 docosahexaenoic acid in culture. 2016 Prostaglandins Leukot. Essent. Fatty Acids pmid:26802938
pmid:26803595
pmid:26805387
pmid:26805874
pmid:26805877
pmid:26806592
pmid:26808265
pmid:26808633
pmid:26812254
pmid:26812855
pmid:26815428
pmid:26817716
pmid:26818530
pmid:26821209
pmid:26821227
pmid:26821608
pmid:26822516
pmid:26825470
pmid:26825799
pmid:26828580
pmid:26828585
pmid:26830472