TRIPALMITIN

TRIPALMITIN is a lipid of Glycerolipids (GL) class. Tripalmitin is associated with abnormalities such as Atherosclerosis, Hypoalphalipoproteinemias, Cystic Fibrosis, PARKINSON DISEASE, LATE-ONSET and Obesity. The involved functions are known as 5-(carboxyamino)imidazole ribonucleotide mutase activity, Certification, phosphatidylcholine-sterol O-acyltransferase activity, Regulation and Uptake. Tripalmitin often locates in Blood, Hepatic, Body tissue, Gastric mucosa and Biopsy sample. The associated genes with TRIPALMITIN are PON1 gene, very high density lipoproteins, THEMIS gene, HEPATIC PROTEIN and chylomicron remnant. The related lipids are Fatty Acids, Total cholesterol, Nonesterified Fatty Acids, Palmitates and tristearin.

Cross Reference

Introduction

To understand associated biological information of TRIPALMITIN, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with TRIPALMITIN?

TRIPALMITIN is suspected in Atherosclerosis, Fatty Liver, Cystic Fibrosis, Hypoalphalipoproteinemias, PARKINSON DISEASE, LATE-ONSET, Obesity and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with TRIPALMITIN

MeSH term MeSH ID Detail
HIV-Associated Lipodystrophy Syndrome D039682 3 associated lipids
Respiratory Distress Syndrome, Newborn D012127 5 associated lipids
Leishmaniasis, Visceral D007898 13 associated lipids
Malabsorption Syndromes D008286 16 associated lipids
Cystic Fibrosis D003550 65 associated lipids
Total 5

PubChem Associated disorders and diseases

What pathways are associated with TRIPALMITIN

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with TRIPALMITIN?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with TRIPALMITIN?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with TRIPALMITIN?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with TRIPALMITIN?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with TRIPALMITIN?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with TRIPALMITIN

Download all related citations
Per page 10 20 50 100 | Total 272
Authors Title Published Journal PubMed Link
Hall A et al. Modeling of the triglyceride-rich core in lipoprotein particles. 2008 J Phys Chem B pmid:18844397
Awad TS et al. Temperature scanning ultrasonic velocity study of complex thermal transformations in solid lipid nanoparticles. 2008 Langmuir pmid:18925768
Hernández MA et al. Biosynthesis of storage compounds by Rhodococcus jostii RHA1 and global identification of genes involved in their metabolism. 2008 BMC Genomics pmid:19077282
Kuo YC and Lin CW Effect of electromagnetic field and surface modification on the electrical behavior of novel solid lipid nanoparticles covered with l-arginine. 2009 Colloids Surf B Biointerfaces pmid:19181492
Zhou JM et al. Biochemical characterization of a putative wheat caffeic acid O-methyltransferase. 2009 Plant Physiol. Biochem. pmid:19211254
Solanki GK et al. Polaron hopping in some biomolecular solids and their charge transfer complexes. 2008 Indian J. Biochem. Biophys. pmid:19239130
de Paula AV et al. Screening of food grade lipases to be used in esterification and interesterification reactions of industrial interest. 2010 Appl. Biochem. Biotechnol. pmid:19263247
Zarevúcka M and Wimmer Z Plant products for pharmacology: application of enzymes in their transformations. 2008 Int J Mol Sci pmid:19330086
Windbergs M et al. Tailor-made dissolution profiles by extruded matrices based on lipid polyethylene glycol mixtures. 2009 J Control Release pmid:19358867
Helgason T et al. Effect of surfactant surface coverage on formation of solid lipid nanoparticles (SLN). 2009 J Colloid Interface Sci pmid:19380149
Windbergs M et al. Influence of structural variations on drug release from lipid/polyethylene glycol matrices. 2009 Eur J Pharm Sci pmid:19406229
Logan JW and Moya FR Animal-derived surfactants for the treatment and prevention of neonatal respiratory distress syndrome: summary of clinical trials. 2009 Ther Clin Risk Manag pmid:19436610
Arrol S et al. Lipoprotein secretion by the human hepatoma cell line Hep G2: differential rates of accumulation of apolipoprotein B and lipoprotein lipids in tissue culture media in response to albumin, glucose and oleate. 1991 Biochim. Biophys. Acta pmid:1954247
Royter M et al. Thermostable lipases from the extreme thermophilic anaerobic bacteria Thermoanaerobacter thermohydrosulfuricus SOL1 and Caldanaerobacter subterraneus subsp. tengcongensis. 2009 Extremophiles pmid:19579003
Sol ER et al. Proteins altered by elevated levels of palmitate or glucose implicated in impaired glucose-stimulated insulin secretion. 2009 Proteome Sci pmid:19607692
Windbergs M et al. Investigating the relationship between drug distribution in solid lipid matrices and dissolution behaviour using Raman spectroscopy and mapping. 2010 J Pharm Sci pmid:19691104
Helgason T et al. Impact of surfactant properties on oxidative stability of beta-carotene encapsulated within solid lipid nanoparticles. 2009 J. Agric. Food Chem. pmid:19691283
Hellemans KH et al. Susceptibility of pancreatic beta cells to fatty acids is regulated by LXR/PPARalpha-dependent stearoyl-coenzyme A desaturase. 2009 PLoS ONE pmid:19787047
Karabulut I et al. Fatty acid selectivity of lipases during acidolysis reaction between oleic acid and monoacid triacylglycerols. 2009 J. Agric. Food Chem. pmid:19835376
Mansour HM et al. Nanomedicine in pulmonary delivery. 2009 Int J Nanomedicine pmid:20054434