Thromboxane b2

Thromboxane b2 is a lipid of Fatty Acyls (FA) class. Thromboxane b2 is associated with abnormalities such as endothelial dysfunction, Diabetes Mellitus, Non-Insulin-Dependent, Diabetes Mellitus, Ischemia and Thrombocytosis. The involved functions are known as Platelet Activation, Excretory function, Anabolism, Inflammation and mRNA Expression. Thromboxane b2 often locates in Endothelium, Hepatic and Microsomes, Liver. The associated genes with Thromboxane b2 are PTGS2 gene, prothrombin fragment 2 and CCL14 wt Allele.

Cross Reference

Introduction

To understand associated biological information of Thromboxane b2, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Thromboxane b2?

Thromboxane b2 is suspected in endothelial dysfunction, Diabetes Mellitus, Non-Insulin-Dependent, Diabetes Mellitus, Ischemia, Thrombocytosis, Acute Coronary Syndrome and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Thromboxane b2

MeSH term MeSH ID Detail
Meningioma D008579 11 associated lipids
Pregnancy Complications, Hematologic D011250 11 associated lipids
Migraine Disorders D008881 11 associated lipids
Influenza, Human D007251 11 associated lipids
Shock D012769 11 associated lipids
Shock, Septic D012772 11 associated lipids
Pregnancy Complications, Cardiovascular D011249 11 associated lipids
Acute Coronary Syndrome D054058 11 associated lipids
Sepsis D018805 11 associated lipids
Venous Thrombosis D020246 11 associated lipids
Nephrotic Syndrome D009404 11 associated lipids
Retinal Detachment D012163 10 associated lipids
Lung Diseases, Obstructive D008173 10 associated lipids
Pneumonia D011014 10 associated lipids
Ovarian Neoplasms D010051 10 associated lipids
Rhinitis D012220 10 associated lipids
Hypertension, Renovascular D006978 10 associated lipids
Respiratory Insufficiency D012131 10 associated lipids
Sleep Apnea, Obstructive D020181 9 associated lipids
Hypolipoproteinemias D007009 9 associated lipids
Cleft Palate D002972 9 associated lipids
Bacteremia D016470 9 associated lipids
Salmonella Infections, Animal D012481 9 associated lipids
Hypertension, Renal D006977 9 associated lipids
Coronary Vasospasm D003329 9 associated lipids
Magnesium Deficiency D008275 9 associated lipids
Tooth, Impacted D014095 9 associated lipids
Leukopenia D007970 9 associated lipids
Thrombocythemia, Essential D013920 9 associated lipids
Carbon Monoxide Poisoning D002249 9 associated lipids
Mucocutaneous Lymph Node Syndrome D009080 9 associated lipids
Renal Artery Obstruction D012078 8 associated lipids
Enteritis D004751 8 associated lipids
Fetal Diseases D005315 8 associated lipids
Aortic Aneurysm D001014 8 associated lipids
Lupus Nephritis D008181 8 associated lipids
Arteriosclerosis Obliterans D001162 8 associated lipids
Peripheral Vascular Diseases D016491 8 associated lipids
Diabetes, Gestational D016640 8 associated lipids
Arthritis, Juvenile D001171 8 associated lipids
Carotid Artery Injuries D020212 8 associated lipids
Obesity, Morbid D009767 8 associated lipids
Fistula D005402 8 associated lipids
Arthus Reaction D001183 8 associated lipids
Mastitis, Bovine D008414 8 associated lipids
Varicose Veins D014648 7 associated lipids
Behcet Syndrome D001528 7 associated lipids
Agranulocytosis D000380 7 associated lipids
Rhinitis, Allergic, Seasonal D006255 7 associated lipids
Infant, Premature, Diseases D007235 7 associated lipids
Per page 10 20 50 100 | Total 293

PubChem Associated disorders and diseases

What pathways are associated with Thromboxane b2

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Thromboxane b2?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Thromboxane b2?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Thromboxane b2?

There are no associated biomedical information in the current reference collection.

What genes are associated with Thromboxane b2?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Thromboxane b2?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Thromboxane b2

Download all related citations
Per page 10 20 50 100 | Total 6367
Authors Title Published Journal PubMed Link
Lee JJ et al. Antithrombotic and antiplatelet activities of Soshiho-tang extract. 2013 BMC Complement Altern Med pmid:23773779
Kim YJ Rhamnetin attenuates melanogenesis by suppressing oxidative stress and pro-inflammatory mediators. 2013 Biol. Pharm. Bull. pmid:23739488
Gremmel T et al. Differential impact of inflammation on six laboratory assays measuring residual arachidonic acid-inducible platelet reactivity during dual antiplatelet therapy. 2013 J. Atheroscler. Thromb. pmid:23739624
Nakamura A et al. Oral administration of a novel long-acting prostacyclin agonist with thromboxane synthase inhibitory activity for pulmonary arterial hypertension. 2013 Circ. J. pmid:23676973
Wu G et al. Pravastatin inhibits plaque rupture and subsequent thrombus formation in atherosclerotic rabbits with hyperlipidemia. 2013 Chem. Pharm. Bull. pmid:23207681
Vazzana N et al. Enhanced lipid peroxidation and platelet activation as potential contributors to increased cardiovascular risk in the low-HDL phenotype. 2013 J Am Heart Assoc pmid:23557750
Shi JJ and Huang LF [Effects of transcutaneous electrical acupoint stimulation of "Zusanli" (ST 36) on gastric mucosal injury in exercise stress-induced gastric ulcer rats]. 2013 Zhen Ci Yan Jiu pmid:24006661
Steib CJ et al. Functional relevance of the cannabinoid receptor 2 - heme oxygenase pathway: a novel target for the attenuation of portal hypertension. 2013 Life Sci. pmid:24007798
Dave M and Amin AR Yin-Yang regulation of prostaglandins and nitric oxide by PGD2 in human arthritis: reversal by celecoxib. 2013 Immunol. Lett. pmid:23603366
An J et al. Blocking of thromboxane Aâ‚‚ receptor attenuates airway mucus hyperproduction induced by cigarette smoke. 2013 Eur. J. Pharmacol. pmid:23399768
Bai L et al. [Effects of electro-acupuncture at Zusanli point on gastric and intestinal blood flow in rats with acute necrotizing pancreatitis]. 2013 Sichuan Da Xue Xue Bao Yi Xue Ban pmid:24490517
Aukema HM et al. Dietary fish oil reduces glomerular injury and elevated renal hydroxyeicosatetraenoic acid levels in the JCR:LA-cp rat, a model of the metabolic syndrome. 2013 Br. J. Nutr. pmid:23151363
Yamamoto M et al. Effects of continuous ingestion of hesperidin and glucosyl hesperidin on vascular gene expression in spontaneously hypertensive rats. 2013 J. Nutr. Sci. Vitaminol. pmid:24418882
Kong X et al. High-mobility-group box protein 1A box reduces development of sodium laurate-induced thromboangiitis obliterans in rats. 2013 J. Vasc. Surg. pmid:23069071
Zulyniak MA et al. Fish oil supplementation alters circulating eicosanoid concentrations in young healthy men. 2013 Metab. Clin. Exp. pmid:23522836
Sadilkova L et al. The effect of selected pre-analytical phase variables on plasma thromboxane Aâ‚‚ measurements in humans. 2013 Int J Lab Hematol pmid:22908995
Brentnall C et al. Influence of oxytetracycline on carprofen pharmacodynamics and pharmacokinetics in calves. 2013 J. Vet. Pharmacol. Ther. pmid:22913421
Yi X et al. Platelet response to aspirin in Chinese stroke patients is independent of genetic polymorphisms of COX-1 C50T and COX-2 G765C. 2013 J. Atheroscler. Thromb. pmid:22972377
Broekema FI et al. In vivo hemostatic efficacy of polyurethane foam compared to collagen and gelatin. 2013 Clin Oral Investig pmid:22855267
Kovarik JJ et al. Eicosanoid modulation by the short-chain fatty acid n-butyrate in human monocytes. 2013 Immunology pmid:23398566