Thromboxane b2

Thromboxane b2 is a lipid of Fatty Acyls (FA) class. Thromboxane b2 is associated with abnormalities such as endothelial dysfunction, Diabetes Mellitus, Non-Insulin-Dependent, Diabetes Mellitus, Ischemia and Thrombocytosis. The involved functions are known as Platelet Activation, Excretory function, Anabolism, Inflammation and mRNA Expression. Thromboxane b2 often locates in Endothelium, Hepatic and Microsomes, Liver. The associated genes with Thromboxane b2 are PTGS2 gene, prothrombin fragment 2 and CCL14 wt Allele.

Cross Reference

Introduction

To understand associated biological information of Thromboxane b2, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Thromboxane b2?

Thromboxane b2 is suspected in endothelial dysfunction, Diabetes Mellitus, Non-Insulin-Dependent, Diabetes Mellitus, Ischemia, Thrombocytosis, Acute Coronary Syndrome and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Thromboxane b2

MeSH term MeSH ID Detail
Disseminated Intravascular Coagulation D004211 7 associated lipids
Uveitis D014605 14 associated lipids
Byssinosis D002095 11 associated lipids
Enteritis D004751 8 associated lipids
Pneumonia, Aspiration D011015 3 associated lipids
Periapical Periodontitis D010485 6 associated lipids
Bronchial Hyperreactivity D016535 15 associated lipids
Arthus Reaction D001183 8 associated lipids
Angina Pectoris D000787 27 associated lipids
Angina, Unstable D000789 14 associated lipids
Vascular Diseases D014652 16 associated lipids
Pregnancy Complications, Hematologic D011250 11 associated lipids
Heart Defects, Congenital D006330 20 associated lipids
Alcoholic Intoxication D000435 15 associated lipids
Ascites D001201 25 associated lipids
Albuminuria D000419 18 associated lipids
Anemia D000740 21 associated lipids
Chediak-Higashi Syndrome D002609 4 associated lipids
Heart Valve Diseases D006349 4 associated lipids
Infant, Premature, Diseases D007235 7 associated lipids
Hyperlipoproteinemias D006951 15 associated lipids
Coronary Vasospasm D003329 9 associated lipids
Scleroderma, Systemic D012595 16 associated lipids
Keratitis D007634 7 associated lipids
Mastitis, Bovine D008414 8 associated lipids
Celiac Disease D002446 16 associated lipids
Rhinitis, Allergic, Seasonal D006255 7 associated lipids
Placenta Diseases D010922 5 associated lipids
Salmonella Infections, Animal D012481 9 associated lipids
Raynaud Disease D011928 7 associated lipids
Nephritis D009393 19 associated lipids
Bartter Syndrome D001477 5 associated lipids
Respiration Disorders D012120 5 associated lipids
Renal Artery Obstruction D012078 8 associated lipids
Hypolipoproteinemias D007009 9 associated lipids
Carotid Stenosis D016893 15 associated lipids
Influenza, Human D007251 11 associated lipids
Bronchopneumonia D001996 7 associated lipids
Facial Pain D005157 5 associated lipids
Abortion, Habitual D000026 5 associated lipids
Eye Burns D005126 13 associated lipids
Retinal Detachment D012163 10 associated lipids
Cleft Palate D002972 9 associated lipids
Choline Deficiency D002796 16 associated lipids
Leiomyosarcoma D007890 4 associated lipids
Carcinoma, Non-Small-Cell Lung D002289 72 associated lipids
Zellweger Syndrome D015211 39 associated lipids
Atrial Fibrillation D001281 16 associated lipids
Coronary Thrombosis D003328 7 associated lipids
Glomerulonephritis, Membranous D015433 6 associated lipids
Per page 10 20 50 100 | Total 293

PubChem Associated disorders and diseases

What pathways are associated with Thromboxane b2

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Thromboxane b2?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Thromboxane b2?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Thromboxane b2?

There are no associated biomedical information in the current reference collection.

What genes are associated with Thromboxane b2?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Thromboxane b2?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Thromboxane b2

Download all related citations
Per page 10 20 50 100 | Total 6367
Authors Title Published Journal PubMed Link
Luzak B et al. Xanthohumol from hop cones (Humulus lupulus L.) prevents ADP-induced platelet reactivity. 2017 Arch. Physiol. Biochem. pmid:27855519
Yu M et al. The Effect of Chinese Herbal Medicine Formula mKG on Allergic Asthma by Regulating Lung and Plasma Metabolic Alternations. 2017 Int J Mol Sci pmid:28287417
Jin M et al. Effects of pulmonary static inflation with 50% xenon on oxygen impairment during cardiopulmonary bypass for stanford type A acute aortic dissection: A pilot study. 2017 Medicine (Baltimore) pmid:28272227
Kramkowski K et al. Short-term treatment with nitrate is not sufficient to induce in vivo antithrombotic effects in rats and mice. 2017 Naunyn Schmiedebergs Arch. Pharmacol. pmid:27743016
Obilade OA et al. Prostacyclin, thromboxane and glomerular filtration rate are abnormal in sickle cell pregnancy. 2017 PLoS ONE pmid:28880908
Xie P et al. Antithrombotic Effect and Mechanism of Radix Paeoniae Rubra. 2017 Biomed Res Int pmid:28299338
Kosik-Bogacka DI et al. The inflammatory effect of infection with Hymenolepis diminuta via the increased expression and activity of COX-1 and COX-2 in the rat jejunum and colon. 2016 Exp. Parasitol. pmid:27466058
Jiang J et al. Effect of Marine-Derived n-3 Polyunsaturated Fatty Acids on Major Eicosanoids: A Systematic Review and Meta-Analysis from 18 Randomized Controlled Trials. 2016 PLoS ONE pmid:26808318
Ferrari D et al. Cyanidin-3-O-glucoside inhibits NF-kB signalling in intestinal epithelial cells exposed to TNF-α and exerts protective effects via Nrf2 pathway activation. 2016 Toxicol. Lett. pmid:27793764
Gonzalez-Paredes FJ et al. Contribution of Cyclooxygenase End Products and Oxidative Stress to Intrahepatic Endothelial Dysfunction in Early Non-Alcoholic Fatty Liver Disease. 2016 PLoS ONE pmid:27227672
Kakouros N et al. Risk Factors for Nonplatelet Thromboxane Generation After Coronary Artery Bypass Graft Surgery. 2016 J Am Heart Assoc pmid:27068626
Becerra AZ et al. Increases in ambient particulate matter air pollution, acute changes in platelet function, and effect modification by aspirin and omega-3 fatty acids: A panel study. 2016 J. Toxicol. Environ. Health Part A pmid:27029326
Homoródi N et al. The lack of aspirin resistance in patients with coronary artery disease. 2016 J Transl Med pmid:26980433
Wannhoff A et al. Cardiac volume overload and pulmonary hypertension in long-term follow-up of patients with a transjugular intrahepatic portosystemic shunt. 2016 Aliment. Pharmacol. Ther. pmid:26919285
Santilli F et al. Pentraxin 3 and Platelet Activation in Obese Patients After Gastric Banding. 2016 Circ. J. pmid:26632534
Mayer AM et al. Classical and Alternative Activation of Cyanobacterium Oscillatoria sp. Lipopolysaccharide-Treated Rat Microglia in vitro. 2016 Toxicol. Sci. pmid:26609141
Taneja A et al. Biomarker exposure-response relationships as the basis for rational dose selection: Lessons from a simulation exercise using a selective COX-2 inhibitor. 2016 J Clin Pharmacol pmid:26331692
Siewiera K et al. Long-term untreated streptozotocin-diabetes leads to increased expression and elevated activity of prostaglandin H2 synthase in blood platelets. 2016 Platelets pmid:26325148
Sugita R et al. A novel selective prostaglandin E2 synthesis inhibitor relieves pyrexia and arthritis in Guinea pigs inflammatory models. 2016 J. Pharmacol. Sci. pmid:26906248
Yan H et al. Seawater Immersion Aggravates Burn Injury Causing Severe Blood Coagulation Dysfunction. 2016 Biomed Res Int pmid:26885523