Nerolidol

Nerolidol is a lipid of Prenol Lipids (PR) class. Nerolidol is associated with abnormalities such as Hyperostosis, Diffuse Idiopathic Skeletal, Corn of toe, Infection, Leishmaniasis and Leishmaniasis, Cutaneous. The involved functions are known as Protein Biosynthesis, Anabolism, Signal, volatile substances and terpene biosynthetic process. Nerolidol often locates in Protoplasm, Plastids, Cytoplasmic matrix, Body tissue and Mitochondria. The associated genes with Nerolidol are Genome, Genes, Plant, Homologous Gene, Recombinant Proteins and monoterpene synthase. The related lipids are Pinene, prenol and Sterols.

Cross Reference

Introduction

To understand associated biological information of Nerolidol, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Nerolidol?

Nerolidol is suspected in Plasmodium falciparum infection, Infection, Corn of toe, Leishmaniasis, Leishmaniasis, Cutaneous, Exanthema and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Nerolidol

MeSH term MeSH ID Detail
Stomach Ulcer D013276 75 associated lipids
Dermatomycoses D003881 17 associated lipids
Leishmaniasis D007896 19 associated lipids
Total 3

PubChem Associated disorders and diseases

What pathways are associated with Nerolidol

Lipid pathways are not clear in current pathway databases. We organized associated pathways with Nerolidol through full-text articles, including metabolic pathways or pathways of biological mechanisms.

Related references are published most in these journals:

Pathway name Related literatures
Loading... please refresh the page if content is not showing up.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Nerolidol?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Nerolidol?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Nerolidol?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Nerolidol?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Nerolidol?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Nerolidol

Download all related citations
Per page 10 20 50 100 | Total 123
Authors Title Published Journal PubMed Link
Di Campli E et al. Activity of tea tree oil and nerolidol alone or in combination against Pediculus capitis (head lice) and its eggs. 2012 Parasitol. Res. pmid:22847279
Gonçalves O et al. Evaluation of the mutagenicity of sesquiterpenic compounds and their influence on the susceptibility towards antibiotics of two clinically relevant bacterial strains. 2011 Mutat. Res. pmid:21453784
Navarro-Moll MC et al. In vitro and in vivo activity of three sesquiterpenes against L(3) larvae of Anisakis type I. 2011 Exp. Parasitol. pmid:20932829
Pículo F et al. In vivo genotoxicity assessment of nerolidol. 2011 J Appl Toxicol pmid:21089164
Tamogami S et al. Conversion of airborne nerolidol to DMNT emission requires additional signals in Achyranthes bidentata. 2011 FEBS Lett. pmid:21510937
Kiem PV et al. Chemical constituents of the rhizomes of Hedychium coronarium and their inhibitory effect on the pro-inflammatory cytokines production LPS-stimulated in bone marrow-derived dendritic cells. 2011 Bioorg. Med. Chem. Lett. pmid:22071304
Nakano C et al. Identification and characterization of the linalool/nerolidol synthase from Streptomyces clavuligerus. 2011 Chembiochem pmid:21910204
Yang K et al. Toxicity of Rhododendron anthopogonoides essential oil and its constituent compounds towards Sitophilus zeamais. 2011 Molecules pmid:22143541
Song WF et al. [Analyze on chemical compositions of Dalbergia odorifera essential oils extracted by CO2-supercritical-fluid-extraction and steam distillation extraction]. 2011 Zhong Yao Cai pmid:22506398
Mabrouk S et al. Chemical composition of essential oils from leaves, stems, flower heads and roots of Conyza bonariensis L. from Tunisia. 2011 Nat. Prod. Res. pmid:21240765