22,23-dihydrobrassicasterol

22,23-dihydrobrassicasterol is a lipid of Sterol Lipids (ST) class. 22,23-dihydrobrassicasterol is associated with abnormalities such as Diabetes, Macular degeneration, Drusen, Systemic disease and Diabetes Mellitus. The involved functions are known as cholesterol metabolism, Synthesis, Intestinal Absorption, Liver function and cholesterol absorption. 22,23-dihydrobrassicasterol often locates in Back and Cell membrane. The associated genes with 22,23-dihydrobrassicasterol are apolipoprotein E-3. The related lipids are Total cholesterol, campesterol, lathosterol, Fatty Acids, Nonesterified and Cholesterol, Dietary.

Cross Reference

Introduction

To understand associated biological information of 22,23-dihydrobrassicasterol, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with 22,23-dihydrobrassicasterol?

22,23-dihydrobrassicasterol is suspected in Diabetes, Macular degeneration, Drusen, Systemic disease, Diabetes Mellitus, Liver diseases and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with 22,23-dihydrobrassicasterol

MeSH term MeSH ID Detail
Hypolipoproteinemias D007009 9 associated lipids
Xanthomatosis D014973 17 associated lipids
Hyperlipoproteinemia Type II D006938 22 associated lipids
Metabolic Syndrome D024821 44 associated lipids
Coronary Disease D003327 70 associated lipids
Hyperlipidemias D006949 73 associated lipids
Hypercholesterolemia D006937 91 associated lipids
Total 7

PubChem Associated disorders and diseases

What pathways are associated with 22,23-dihydrobrassicasterol

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with 22,23-dihydrobrassicasterol?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with 22,23-dihydrobrassicasterol?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with 22,23-dihydrobrassicasterol?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with 22,23-dihydrobrassicasterol?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with 22,23-dihydrobrassicasterol?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with 22,23-dihydrobrassicasterol

Download all related citations
Per page 10 20 50 100 | Total 313
Authors Title Published Journal PubMed Link
Lindenthal B et al. Serum plant sterols and biliary cholesterol secretion in humans: studies with ursodeoxycholic acid. 2002 J. Lipid Res. pmid:12091491
Clouse SD Arabidopsis mutants reveal multiple roles for sterols in plant development. 2002 Plant Cell pmid:12215500
Khabazian I et al. Isolation of various forms of sterol beta-D-glucoside from the seed of Cycas circinalis: neurotoxicity and implications for ALS-parkinsonism dementia complex. 2002 J. Neurochem. pmid:12153476
Nissinen M et al. Micellar distribution of cholesterol and phytosterols after duodenal plant stanol ester infusion. 2002 Am. J. Physiol. Gastrointest. Liver Physiol. pmid:12016126
Ostlund RE et al. Gastrointestinal absorption and plasma kinetics of soy Delta(5)-phytosterols and phytostanols in humans. 2002 Am. J. Physiol. Endocrinol. Metab. pmid:11882512
Brämswig S et al. Carbamazepine increases atherogenic lipoproteins: mechanism of action in male adults. 2002 Am. J. Physiol. Heart Circ. Physiol. pmid:11788421
Holmberg N et al. Sterol C-24 methyltransferase type 1 controls the flux of carbon into sterol biosynthesis in tobacco seed. 2002 Plant Physiol. pmid:12226510
Hallikainen M et al. Short-term LDL cholesterol-lowering efficacy of plant stanol esters. 2002 BMC Cardiovasc Disord pmid:12197945
Sudhop T et al. Comparison of the hepatic clearances of campesterol, sitosterol, and cholesterol in healthy subjects suggests that efflux transporters controlling intestinal sterol absorption also regulate biliary secretion. 2002 Gut pmid:12427790
Awad AB et al. Effect of phytosterols on cholesterol metabolism and MAP kinase in MDA-MB-231 human breast cancer cells. 2003 J. Nutr. Biochem. pmid:12667603
Gorinstein S et al. Comparison of the contents of the main biochemical compounds and the antioxidant activity of some Spanish olive oils as determined by four different radical scavenging tests. 2003 J. Nutr. Biochem. pmid:12742543
von Bonsdorff-Nikander A et al. Physical stability of a microcrystalline beta-sitosterol suspension in oil. 2003 Eur J Pharm Sci pmid:12885381
Ntanios FY et al. Effects of various amounts of dietary plant sterol esters on plasma and hepatic sterol concentration and aortic foam cell formation of cholesterol-fed hamsters. 2003 Atherosclerosis pmid:12860249
Schaller H The role of sterols in plant growth and development. 2003 Prog. Lipid Res. pmid:12689617
Chan DC et al. Plasma markers of cholesterol homeostasis and apolipoprotein B-100 kinetics in the metabolic syndrome. 2003 Obes. Res. pmid:12690090
Graf GA et al. ABCG5 and ABCG8 are obligate heterodimers for protein trafficking and biliary cholesterol excretion. 2003 J. Biol. Chem. pmid:14504269
Marcone MF et al. Amaranth as a rich dietary source of beta-sitosterol and other phytosterols. 2003 Plant Foods Hum Nutr pmid:15366261
Watts GF et al. Effect of a statin on hepatic apolipoprotein B-100 secretion and plasma campesterol levels in the metabolic syndrome. 2003 Int. J. Obes. Relat. Metab. Disord. pmid:12821974
Mezine I et al. Analysis of plant sterol and stanol esters in cholesterol-lowering spreads and beverages using high-performance liquid chromatography-atmospheric pressure chemical ionization-mass spectroscopy. 2003 J. Agric. Food Chem. pmid:12952413
Hendriks HF et al. Safety of long-term consumption of plant sterol esters-enriched spread. 2003 Eur J Clin Nutr pmid:12771969