22,23-dihydrobrassicasterol

22,23-dihydrobrassicasterol is a lipid of Sterol Lipids (ST) class. 22,23-dihydrobrassicasterol is associated with abnormalities such as Diabetes, Macular degeneration, Drusen, Systemic disease and Diabetes Mellitus. The involved functions are known as cholesterol metabolism, Synthesis, Intestinal Absorption, Liver function and cholesterol absorption. 22,23-dihydrobrassicasterol often locates in Back and Cell membrane. The associated genes with 22,23-dihydrobrassicasterol are apolipoprotein E-3. The related lipids are Total cholesterol, campesterol, lathosterol, Fatty Acids, Nonesterified and Cholesterol, Dietary.

Cross Reference

Introduction

To understand associated biological information of 22,23-dihydrobrassicasterol, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with 22,23-dihydrobrassicasterol?

22,23-dihydrobrassicasterol is suspected in Diabetes, Macular degeneration, Drusen, Systemic disease, Diabetes Mellitus, Liver diseases and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with 22,23-dihydrobrassicasterol

MeSH term MeSH ID Detail
Coronary Disease D003327 70 associated lipids
Hypercholesterolemia D006937 91 associated lipids
Hyperlipoproteinemia Type II D006938 22 associated lipids
Hyperlipidemias D006949 73 associated lipids
Hypolipoproteinemias D007009 9 associated lipids
Xanthomatosis D014973 17 associated lipids
Metabolic Syndrome D024821 44 associated lipids
Total 7

PubChem Associated disorders and diseases

What pathways are associated with 22,23-dihydrobrassicasterol

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with 22,23-dihydrobrassicasterol?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with 22,23-dihydrobrassicasterol?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with 22,23-dihydrobrassicasterol?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with 22,23-dihydrobrassicasterol?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with 22,23-dihydrobrassicasterol?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with 22,23-dihydrobrassicasterol

Download all related citations
Per page 10 20 50 100 | Total 313
Authors Title Published Journal PubMed Link
Awad AB et al. Effect of phytosterols on cholesterol metabolism and MAP kinase in MDA-MB-231 human breast cancer cells. 2003 J. Nutr. Biochem. pmid:12667603
Fransen HP et al. Customary use of plant sterol and plant stanol enriched margarine is associated with changes in serum plant sterol and stanol concentrations in humans. 2007 J. Nutr. pmid:17449596
Tomoyori H et al. Phytosterol oxidation products are absorbed in the intestinal lymphatics in rats but do not accelerate atherosclerosis in apolipoprotein E-deficient mice. 2004 J. Nutr. pmid:15226455
Tammi A et al. Dietary plant sterols alter the serum plant sterol concentration but not the cholesterol precursor sterol concentrations in young children (the STRIP Study). Special Turku Coronary Risk Factor Intervention Project. 2001 J. Nutr. pmid:11435511
van der Made SM et al. Consuming a buttermilk drink containing lutein-enriched egg yolk daily for 1 year increased plasma lutein but did not affect serum lipid or lipoprotein concentrations in adults with early signs of age-related macular degeneration. 2014 J. Nutr. pmid:24991045
Khabazian I et al. Isolation of various forms of sterol beta-D-glucoside from the seed of Cycas circinalis: neurotoxicity and implications for ALS-parkinsonism dementia complex. 2002 J. Neurochem. pmid:12153476
Lembcke J et al. Rapid quantification of free and esterified phytosterols in human serum using APPI-LC-MS/MS. 2005 J. Lipid Res. pmid:15489546
Wewer V et al. Quantification of sterol lipids in plants by quadrupole time-of-flight mass spectrometry. 2011 J. Lipid Res. pmid:21382968
Gylling H et al. Serum sterols during stanol ester feeding in a mildly hypercholesterolemic population. 1999 J. Lipid Res. pmid:10191283
Shafaati M et al. Marked accumulation of 27-hydroxycholesterol in the brains of Alzheimer's patients with the Swedish APP 670/671 mutation. 2011 J. Lipid Res. pmid:21335619