22,23-dihydrobrassicasterol

22,23-dihydrobrassicasterol is a lipid of Sterol Lipids (ST) class. 22,23-dihydrobrassicasterol is associated with abnormalities such as Diabetes, Macular degeneration, Drusen, Systemic disease and Diabetes Mellitus. The involved functions are known as cholesterol metabolism, Synthesis, Intestinal Absorption, Liver function and cholesterol absorption. 22,23-dihydrobrassicasterol often locates in Back and Cell membrane. The associated genes with 22,23-dihydrobrassicasterol are apolipoprotein E-3. The related lipids are Total cholesterol, campesterol, lathosterol, Fatty Acids, Nonesterified and Cholesterol, Dietary.

Cross Reference

Introduction

To understand associated biological information of 22,23-dihydrobrassicasterol, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with 22,23-dihydrobrassicasterol?

22,23-dihydrobrassicasterol is suspected in Diabetes, Macular degeneration, Drusen, Systemic disease, Diabetes Mellitus, Liver diseases and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with 22,23-dihydrobrassicasterol

MeSH term MeSH ID Detail
Coronary Disease D003327 70 associated lipids
Hypercholesterolemia D006937 91 associated lipids
Hyperlipoproteinemia Type II D006938 22 associated lipids
Hyperlipidemias D006949 73 associated lipids
Hypolipoproteinemias D007009 9 associated lipids
Xanthomatosis D014973 17 associated lipids
Metabolic Syndrome D024821 44 associated lipids
Total 7

PubChem Associated disorders and diseases

What pathways are associated with 22,23-dihydrobrassicasterol

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with 22,23-dihydrobrassicasterol?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with 22,23-dihydrobrassicasterol?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with 22,23-dihydrobrassicasterol?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with 22,23-dihydrobrassicasterol?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with 22,23-dihydrobrassicasterol?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with 22,23-dihydrobrassicasterol

Download all related citations
Per page 10 20 50 100 | Total 313
Authors Title Published Journal PubMed Link
Lembcke J et al. Rapid quantification of free and esterified phytosterols in human serum using APPI-LC-MS/MS. 2005 J. Lipid Res. pmid:15489546
Lindenthal B et al. Serum plant sterols and biliary cholesterol secretion in humans: studies with ursodeoxycholic acid. 2002 J. Lipid Res. pmid:12091491
Jakulj L et al. Plasma plant sterols serve as poor markers of cholesterol absorption in man. 2013 J. Lipid Res. pmid:23178226
Matthan NR et al. Cholesterol absorption and synthesis markers in individuals with and without a CHD event during pravastatin therapy: insights from the PROSPER trial. 2010 J. Lipid Res. pmid:19578163
Wewer V et al. Quantification of sterol lipids in plants by quadrupole time-of-flight mass spectrometry. 2011 J. Lipid Res. pmid:21382968
Vanmierlo T et al. Dietary intake of plant sterols stably increases plant sterol levels in the murine brain. 2012 J. Lipid Res. pmid:22279184
Nes WR et al. Steric effects at C-20 and C-24 on the metabolism of sterols by Tetrahymena pyriformis. 1981 J. Lipid Res. pmid:6793681
Lütjohann D et al. Sterol absorption and sterol balance in phytosterolemia evaluated by deuterium-labeled sterols: effect of sitostanol treatment. 1995 J. Lipid Res. pmid:7595097
Yu L et al. Ezetimibe normalizes metabolic defects in mice lacking ABCG5 and ABCG8. 2005 J. Lipid Res. pmid:15930515
Plat J et al. Common sequence variations in ABCG8 are related to plant sterol metabolism in healthy volunteers. 2005 J. Lipid Res. pmid:15520451
Kuriyama M et al. High levels of plant sterols and cholesterol precursors in cerebrotendinous xanthomatosis. 1991 J. Lipid Res. pmid:2066659
Salen G et al. Hyperabsorption and retention of campestanol in a sitosterolemic homozygote: comparison with her mother and three control subjects. 2000 J. Lipid Res. pmid:11060358
Silbernagel G et al. The relationships of cholesterol metabolism and plasma plant sterols with the severity of coronary artery disease. 2009 J. Lipid Res. pmid:18769018
Relas H et al. Fate of intravenously administered squalene and plant sterols in human subjects. 2001 J. Lipid Res. pmid:11369807
Pinedo S et al. Plasma levels of plant sterols and the risk of coronary artery disease: the prospective EPIC-Norfolk Population Study. 2007 J. Lipid Res. pmid:17074925
Salen G et al. Increased plasma cholestanol and 5 alpha-saturated plant sterol derivatives in subjects with sitosterolemia and xanthomatosis. 1985 J. Lipid Res. pmid:3989379
van Himbergen TM et al. Comparison of the effects of maximal dose atorvastatin and rosuvastatin therapy on cholesterol synthesis and absorption markers. 2009 J. Lipid Res. pmid:19043140
Khabazian I et al. Isolation of various forms of sterol beta-D-glucoside from the seed of Cycas circinalis: neurotoxicity and implications for ALS-parkinsonism dementia complex. 2002 J. Neurochem. pmid:12153476
Fransen HP et al. Customary use of plant sterol and plant stanol enriched margarine is associated with changes in serum plant sterol and stanol concentrations in humans. 2007 J. Nutr. pmid:17449596
Tomoyori H et al. Phytosterol oxidation products are absorbed in the intestinal lymphatics in rats but do not accelerate atherosclerosis in apolipoprotein E-deficient mice. 2004 J. Nutr. pmid:15226455
Tammi A et al. Dietary plant sterols alter the serum plant sterol concentration but not the cholesterol precursor sterol concentrations in young children (the STRIP Study). Special Turku Coronary Risk Factor Intervention Project. 2001 J. Nutr. pmid:11435511
van der Made SM et al. Consuming a buttermilk drink containing lutein-enriched egg yolk daily for 1 year increased plasma lutein but did not affect serum lipid or lipoprotein concentrations in adults with early signs of age-related macular degeneration. 2014 J. Nutr. pmid:24991045
Awad AB et al. Effect of phytosterols on cholesterol metabolism and MAP kinase in MDA-MB-231 human breast cancer cells. 2003 J. Nutr. Biochem. pmid:12667603
Gorinstein S et al. Comparison of the contents of the main biochemical compounds and the antioxidant activity of some Spanish olive oils as determined by four different radical scavenging tests. 2003 J. Nutr. Biochem. pmid:12742543
Sabeva NS et al. Phytosterols differentially influence ABC transporter expression, cholesterol efflux and inflammatory cytokine secretion in macrophage foam cells. 2011 J. Nutr. Biochem. pmid:21111593
Delaney B et al. Oral absorption of phytosterols and emulsified phytosterols by Sprague-Dawley rats. 2004 J. Nutr. Biochem. pmid:15135153
Awad AB et al. beta-Sitosterol stimulates ceramide metabolism in differentiated Caco2 cells. 2005 J. Nutr. Biochem. pmid:16098730
Hedman M et al. Serum noncholesterol sterols in children with heterozygous familial hypercholesterolemia undergoing pravastatin therapy. 2006 J. Pediatr. pmid:16492436
Kurvinen A et al. Effects of long-term parenteral nutrition on serum lipids, plant sterols, cholesterol metabolism, and liver histology in pediatric intestinal failure. 2011 J. Pediatr. Gastroenterol. Nutr. pmid:21543999
Kurvinen A et al. Parenteral plant sterols and intestinal failure-associated liver disease in neonates. 2012 J. Pediatr. Gastroenterol. Nutr. pmid:22197940
Pakarinen MP et al. Growth hormone selectively improves intestinal cholesterol absorption after jejunoileal autotransplantation in pigs. 2004 J. Pediatr. Surg. pmid:15300531
Clément C et al. Influence of colour type and previous cultivation on secondary metabolites in hypocotyls and leaves of maca (Lepidium meyenii Walpers). 2010 J. Sci. Food Agric. pmid:20355123
Weingärtner O et al. Plant sterol ester diet supplementation increases serum plant sterols and markers of cholesterol synthesis, but has no effect on total cholesterol levels. 2017 J. Steroid Biochem. Mol. Biol. pmid:27473562
Stellaard F et al. The value of surrogate markers to monitor cholesterol absorption, synthesis and bioconversion to bile acids under lipid lowering therapies. 2017 J. Steroid Biochem. Mol. Biol. pmid:27060336
Sharma M et al. Inhibition of sterol biosynthesis reduces tombusvirus replication in yeast and plants. 2010 J. Virol. pmid:20015981
Nasu K et al. Impact of cholesterol metabolism on coronary plaque vulnerability of target vessels: a combined analysis of virtual histology intravascular ultrasound and optical coherence tomography. 2013 JACC Cardiovasc Interv pmid:23769651
Tilvis RS et al. Cholesterol and all-cause mortality in Honolulu. 2001 Lancet pmid:11741659
Lupattelli G et al. Cholesterol metabolism differs after statin therapy according to the type of hyperlipemia. 2012 Life Sci. pmid:22554491
Barbosa SP et al. Effects of ezetimibe on markers of synthesis and absorption of cholesterol in high-risk patients with elevated C-reactive protein. 2013 Life Sci. pmid:23507424
Mo S et al. Quantitative analysis of phytosterols in edible oils using APCI liquid chromatography-tandem mass spectrometry. 2013 Lipids pmid:23884629
Forchielli ML et al. The spectrum of plant and animal sterols in different oil-derived intravenous emulsions. 2010 Lipids pmid:20049583
Hallikainen M et al. Cholesterol metabolism and serum non-cholesterol sterols: summary of 13 plant stanol ester interventions. 2014 Lipids Health Dis pmid:24766766
Nguyen TT et al. Cholesterol-lowering effect of stanol ester in a US population of mildly hypercholesterolemic men and women: a randomized controlled trial. 1999 Mayo Clin. Proc. pmid:10593347
Plat J et al. Preferential campesterol incorporation into various tissues in apolipoprotein E*3-Leiden mice consuming plant sterols or stanols. 2008 Metab. Clin. Exp. pmid:18702950
Kempen HJ et al. Lathosterol level in plasma is elevated in type III hyperlipoproteinemia, but not in non-type III subjects with apolipoprotein E2/2 phenotype, nor in type IIa or IIb hyperlipoproteinemia. 1991 Metab. Clin. Exp. pmid:2000034
Sudhop T et al. Serum plant sterols as a potential risk factor for coronary heart disease. 2002 Metab. Clin. Exp. pmid:12489060
Ikeda I et al. Mechanisms of phytosterolemia in stroke-prone spontaneously hypertensive and WKY rats. 2001 Metab. Clin. Exp. pmid:11699058
Labonté MÈ et al. Comparison of the impact of trans fatty acids from ruminant and industrial sources on surrogate markers of cholesterol homeostasis in healthy men. 2011 Mol Nutr Food Res pmid:21656668
Aherne SA and O'Brien NM Modulation of cytokine production by plant sterols in stimulated human Jurkat T cells. 2008 Mol Nutr Food Res pmid:18465778
Morrison AH and Ritter KS Effect of host insect sterols on the development and sterol composition of Steinernema feltiae. 1986 Mol. Biochem. Parasitol. pmid:3724794
Moreno-Anzúrez NE et al. A Cytotoxic and Anti-inflammatory Campesterol Derivative from Genetically Transformed Hairy Roots of Lopezia racemosa Cav. (Onagraceae). 2017 Molecules pmid:28085103
Salinas R et al. Production of the anti-inflammatory compound 6-O-palmitoyl-3-O-β-D-glucopyranosylcampesterol by Callus cultures of Lopezia racemosa Cav. (Onagraceae). 2014 Molecules pmid:24962399
Malek SN et al. Cytotoxic components of Pereskia bleo (Kunth) DC. (Cactaceae) leaves. 2009 Molecules pmid:19471192
Miettinen TA et al. Reduction of serum cholesterol with sitostanol-ester margarine in a mildly hypercholesterolemic population. 1995 N. Engl. J. Med. pmid:7566021
Sabudak T et al. Potent tyrosinase inhibitors from Trifolium balansae. 2006 Nat. Prod. Res. pmid:16901809
Arfaoui MO et al. Variation in oil content, fatty acid and phytosterols profile of Onopordum acanthium L. during seed development. 2014 Nat. Prod. Res. pmid:25103576
de Araújo MF et al. Simiranes A and B: erythroxylanes diterpenes and other compounds from Simira eliezeriana (Rubiaceae). 2011 Nat. Prod. Res. pmid:21936665
Gerloff T et al. Influence of the SLCO1B1*1b and *5 haplotypes on pravastatin's cholesterol lowering capabilities and basal sterol serum levels. 2006 Naunyn Schmiedebergs Arch. Pharmacol. pmid:16568260
van den Kommer TN et al. The role of extracerebral cholesterol homeostasis and ApoE e4 in cognitive decline. 2012 Neurobiol. Aging pmid:21482441
Teunissen CE et al. Serum cholesterol, precursors and metabolites and cognitive performance in an aging population. 2003 Jan-Feb Neurobiol. Aging pmid:12493560
Strom SS et al. Phytoestrogen intake and prostate cancer: a case-control study using a new database. 1999 Nutr Cancer pmid:10227039
Ramos SC et al. The role of soluble fiber intake in patients under highly effective lipid-lowering therapy. 2011 Nutr J pmid:21810257
Ramprasath VR et al. Consumption of a dietary portfolio of cholesterol lowering foods improves blood lipids without affecting concentrations of fat soluble compounds. 2014 Nutr J pmid:25326876
Miettinen TA et al. Twenty-one year tracking of serum non-cholesterol sterols. The Cardiovascular Risk in Young Finns study. 2009 Nutr Metab Cardiovasc Dis pmid:19185477
Lupattelli G et al. Patterns of cholesterol metabolism: pathophysiological and therapeutic implications for dyslipidemias and the metabolic syndrome. 2011 Nutr Metab Cardiovasc Dis pmid:21855307
Lupattelli G et al. Non-cholesterol sterols in different forms of primary hyperlipemias. 2012 Nutr Metab Cardiovasc Dis pmid:20708389
Ras RT et al. Increases in plasma plant sterols stabilize within four weeks of plant sterol intake and are independent of cholesterol metabolism. 2016 Nutr Metab Cardiovasc Dis pmid:26806045
Miettinen TA et al. Non-cholesterol sterols in serum and endarterectomized carotid arteries after a short-term plant stanol and sterol ester challenge. 2011 Nutr Metab Cardiovasc Dis pmid:20096545
Suttiarporn P et al. Structures of phytosterols and triterpenoids with potential anti-cancer activity in bran of black non-glutinous rice. 2015 Nutrients pmid:25756784
Mansour MP et al. Characterization of oilseed lipids from "DHA-producing Camelina sativa": a new transformed land plant containing long-chain omega-3 oils. 2014 Nutrients pmid:24566436
Martins CM et al. Common sources and composition of phytosterols and their estimated intake by the population in the city of São Paulo, Brazil. 2013 Nutrition pmid:23422542
De Vuono S et al. Laparoscopic sleeve gastrectomy modifies cholesterol synthesis but not cholesterol absorption. Obes Res Clin Pract pmid:28057416
Chan DC et al. Plasma markers of cholesterol homeostasis and apolipoprotein B-100 kinetics in the metabolic syndrome. 2003 Obes. Res. pmid:12690090
Márk L and Paragh G [Change in the cholesterol metabolism associated with the combined inhibition of synthesis and absorption]. 2007 Orv Hetil pmid:17403635
Ijzerman RG et al. The association between low birth weight and high levels of cholesterol is not due to an increased cholesterol synthesis or absorption: analysis in twins. 2002 Pediatr. Res. pmid:12438663
Noto D et al. Plasma non-cholesterol sterols: a useful diagnostic tool in pediatric hypercholesterolemia. 2010 Pediatr. Res. pmid:20091938
Valitova JN et al. Effects of sterol-binding agent nystatin on wheat roots: the changes in membrane permeability, sterols and glycoceramides. 2011 Phytochemistry pmid:21726881
Montserrat-de la Paz S et al. The sterols isolated from Evening Primrose oil modulate the release of proinflammatory mediators. 2012 Phytomedicine pmid:22819447
Choi JM et al. Identification of campesterol from Chrysanthemum coronarium L. and its antiangiogenic activities. 2007 Phytother Res pmid:17604370
Clouse SD Arabidopsis mutants reveal multiple roles for sterols in plant development. 2002 Plant Cell pmid:12215500
Klahre U et al. The Arabidopsis DIMINUTO/DWARF1 gene encodes a protein involved in steroid synthesis. 1998 Plant Cell pmid:9761794
Sawai S et al. Sterol side chain reductase 2 is a key enzyme in the biosynthesis of cholesterol, the common precursor of toxic steroidal glycoalkaloids in potato. 2014 Plant Cell pmid:25217510
Fujioka S et al. The Arabidopsis deetiolated2 mutant is blocked early in brassinosteroid biosynthesis. 1997 Plant Cell pmid:9401120
Hong Z et al. The Rice brassinosteroid-deficient dwarf2 mutant, defective in the rice homolog of Arabidopsis DIMINUTO/DWARF1, is rescued by the endogenously accumulated alternative bioactive brassinosteroid, dolichosterone. 2005 Plant Cell pmid:15994910
Chung HY et al. Simultaneous suppression of three genes related to brassinosteroid (BR) biosynthesis altered campesterol and BR contents, and led to a dwarf phenotype in Arabidopsis thaliana. 2010 Plant Cell Rep. pmid:20169349
Vanmierlo T et al. Cerebral accumulation of dietary derivable plant sterols does not interfere with memory and anxiety related behavior in Abcg5-/- mice. 2011 Plant Foods Hum Nutr pmid:21431910
Marcone MF et al. Amaranth as a rich dietary source of beta-sitosterol and other phytosterols. 2003 Plant Foods Hum Nutr pmid:15366261
Schaeffer A et al. The ratio of campesterol to sitosterol that modulates growth in Arabidopsis is controlled by STEROL METHYLTRANSFERASE 2;1. 2001 Plant J. pmid:11319028
Wang L et al. OsGSR1 is involved in crosstalk between gibberellins and brassinosteroids in rice. 2009 Plant J. pmid:18980660
Noguchi T et al. Arabidopsis det2 is defective in the conversion of (24R)-24-methylcholest-4-En-3-one to (24R)-24-methyl-5alpha-cholestan-3-one in brassinosteroid biosynthesis. 1999 Plant Physiol. pmid:10398719
Nomura T et al. Brassinosteroid deficiency due to truncated steroid 5alpha-reductase causes dwarfism in the lk mutant of pea. 2004 Plant Physiol. pmid:15286289
Schaller H et al. Overexpression of an Arabidopsis cDNA encoding a sterol-C24(1)-methyltransferase in tobacco modifies the ratio of 24-methyl cholesterol to sitosterol and is associated with growth reduction. 1998 Plant Physiol. pmid:9765531
Holmberg N et al. Sterol C-24 methyltransferase type 1 controls the flux of carbon into sterol biosynthesis in tobacco seed. 2002 Plant Physiol. pmid:12226510
Choe S et al. The Arabidopsis dwarf1 mutant is defective in the conversion of 24-methylenecholesterol to campesterol in brassinosteroid biosynthesis. 1999 Plant Physiol. pmid:10069828
Nguyen HT et al. Molecular characterization of Glycine max squalene synthase genes in seed phytosterol biosynthesis. 2013 Plant Physiol. Biochem. pmid:24036394
Herchi W et al. Phytosterols accumulation in the seeds of Linum usitatissimum L. 2009 Plant Physiol. Biochem. pmid:19616960
Du HX et al. Engineering Yarrowia lipolytica for Campesterol Overproduction. 2016 PLoS ONE pmid:26751680
Lin X et al. Plasma biomarker of dietary phytosterol intake. 2015 PLoS ONE pmid:25668184
Yu L et al. Disruption of Abcg5 and Abcg8 in mice reveals their crucial role in biliary cholesterol secretion. 2002 Proc. Natl. Acad. Sci. U.S.A. pmid:12444248
Sehayek E et al. Loci on chromosomes 14 and 2, distinct from ABCG5/ABCG8, regulate plasma plant sterol levels in a C57BL/6J x CASA/Rk intercross. 2002 Proc. Natl. Acad. Sci. U.S.A. pmid:12446833