22,23-dihydrobrassicasterol

22,23-dihydrobrassicasterol is a lipid of Sterol Lipids (ST) class. 22,23-dihydrobrassicasterol is associated with abnormalities such as Diabetes, Macular degeneration, Drusen, Systemic disease and Diabetes Mellitus. The involved functions are known as cholesterol metabolism, Synthesis, Intestinal Absorption, Liver function and cholesterol absorption. 22,23-dihydrobrassicasterol often locates in Back and Cell membrane. The associated genes with 22,23-dihydrobrassicasterol are apolipoprotein E-3. The related lipids are Total cholesterol, campesterol, lathosterol, Fatty Acids, Nonesterified and Cholesterol, Dietary.

Cross Reference

Introduction

To understand associated biological information of 22,23-dihydrobrassicasterol, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with 22,23-dihydrobrassicasterol?

22,23-dihydrobrassicasterol is suspected in Diabetes, Macular degeneration, Drusen, Systemic disease, Diabetes Mellitus, Liver diseases and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with 22,23-dihydrobrassicasterol

MeSH term MeSH ID Detail
Coronary Disease D003327 70 associated lipids
Hypercholesterolemia D006937 91 associated lipids
Hyperlipoproteinemia Type II D006938 22 associated lipids
Hyperlipidemias D006949 73 associated lipids
Hypolipoproteinemias D007009 9 associated lipids
Xanthomatosis D014973 17 associated lipids
Metabolic Syndrome D024821 44 associated lipids
Total 7

PubChem Associated disorders and diseases

What pathways are associated with 22,23-dihydrobrassicasterol

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with 22,23-dihydrobrassicasterol?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with 22,23-dihydrobrassicasterol?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with 22,23-dihydrobrassicasterol?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with 22,23-dihydrobrassicasterol?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with 22,23-dihydrobrassicasterol?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with 22,23-dihydrobrassicasterol

Download all related citations
Per page 10 20 50 100 | Total 313
Authors Title Published Journal PubMed Link
Feio CA et al. Euterpe oleracea (açai) modifies sterol metabolism and attenuates experimentally-induced atherosclerosis. 2012 J. Atheroscler. Thromb. pmid:22139433
van den Kommer TN et al. The role of extracerebral cholesterol homeostasis and ApoE e4 in cognitive decline. 2012 Neurobiol. Aging pmid:21482441
Vanmierlo T et al. Dietary intake of plant sterols stably increases plant sterol levels in the murine brain. 2012 J. Lipid Res. pmid:22279184
Genser B et al. Plant sterols and cardiovascular disease: a systematic review and meta-analysis. 2012 Eur. Heart J. pmid:22334625
Montserrat-de la Paz S et al. The sterols isolated from Evening Primrose oil modulate the release of proinflammatory mediators. 2012 Phytomedicine pmid:22819447
Kurvinen A et al. Parenteral plant sterols and intestinal failure-associated liver disease in neonates. 2012 J. Pediatr. Gastroenterol. Nutr. pmid:22197940
Lupattelli G et al. Visceral fat positively correlates with cholesterol synthesis in dyslipidaemic patients. 2012 Eur. J. Clin. Invest. pmid:21793822
Lupattelli G et al. Non-cholesterol sterols in different forms of primary hyperlipemias. 2012 Nutr Metab Cardiovasc Dis pmid:20708389
Ito N et al. An ultra performance liquid chromatographic method for determining phytosterol uptake by Caco-2 cells. 2012 Anal. Biochem. pmid:22119071
Lupattelli G et al. Cholesterol metabolism differs after statin therapy according to the type of hyperlipemia. 2012 Life Sci. pmid:22554491
Nguyen HT et al. Molecular characterization of Glycine max squalene synthase genes in seed phytosterol biosynthesis. 2013 Plant Physiol. Biochem. pmid:24036394
Jakulj L et al. Plasma plant sterols serve as poor markers of cholesterol absorption in man. 2013 J. Lipid Res. pmid:23178226
O'Callaghan Y et al. Synthesis and assessment of the relative toxicity of the oxidised derivatives of campesterol and dihydrobrassicasterol in U937 and HepG2 cells. 2013 Biochimie pmid:22561884
Renner O et al. Role of the ABCG8 19H risk allele in cholesterol absorption and gallstone disease. 2013 BMC Gastroenterol pmid:23406058
Dai FJ et al. Effect of pigeon pea (Cajanus cajan L.) on high-fat diet-induced hypercholesterolemia in hamsters. 2013 Food Chem. Toxicol. pmid:23287313
Nasu K et al. Impact of cholesterol metabolism on coronary plaque vulnerability of target vessels: a combined analysis of virtual histology intravascular ultrasound and optical coherence tomography. 2013 JACC Cardiovasc Interv pmid:23769651
Ras RT et al. Consumption of plant sterol-enriched foods and effects on plasma plant sterol concentrations--a meta-analysis of randomized controlled studies. 2013 Atherosclerosis pmid:24075766
Martins CM et al. Common sources and composition of phytosterols and their estimated intake by the population in the city of São Paulo, Brazil. 2013 Nutrition pmid:23422542
Barbosa SP et al. Effects of ezetimibe on markers of synthesis and absorption of cholesterol in high-risk patients with elevated C-reactive protein. 2013 Life Sci. pmid:23507424
Lubinus T et al. Fate of dietary phytosteryl/-stanyl esters: analysis of individual intact esters in human feces. 2013 Eur J Nutr pmid:22777107
Mo S et al. Quantitative analysis of phytosterols in edible oils using APCI liquid chromatography-tandem mass spectrometry. 2013 Lipids pmid:23884629
Lupattelli G et al. A silent mutation of Niemann-Pick C1-like 1 and apolipoprotein E4 modulate cholesterol absorption in primary hyperlipidemias. 2013 Mar-Apr J Clin Lipidol pmid:23415434
Belayachi L et al. Retama monosperma n-hexane extract induces cell cycle arrest and extrinsic pathway-dependent apoptosis in Jurkat cells. 2014 BMC Complement Altern Med pmid:24460687
Sawai S et al. Sterol side chain reductase 2 is a key enzyme in the biosynthesis of cholesterol, the common precursor of toxic steroidal glycoalkaloids in potato. 2014 Plant Cell pmid:25217510
Salinas R et al. Production of the anti-inflammatory compound 6-O-palmitoyl-3-O-β-D-glucopyranosylcampesterol by Callus cultures of Lopezia racemosa Cav. (Onagraceae). 2014 Molecules pmid:24962399
Benesch MG and McElhaney RN A comparative calorimetric study of the effects of cholesterol and the plant sterols campesterol and brassicasterol on the thermotropic phase behavior of dipalmitoylphosphatidylcholine bilayer membranes. 2014 Biochim. Biophys. Acta pmid:24704414
Arfaoui MO et al. Variation in oil content, fatty acid and phytosterols profile of Onopordum acanthium L. during seed development. 2014 Nat. Prod. Res. pmid:25103576
Radice M et al. Chemical characterization and antioxidant activity of Amazonian (Ecuador) Caryodendron orinocense Karst. and Bactris gasipaes Kunth seed oils. 2014 J Oleo Sci pmid:25391685
Ramprasath VR et al. Consumption of a dietary portfolio of cholesterol lowering foods improves blood lipids without affecting concentrations of fat soluble compounds. 2014 Nutr J pmid:25326876
van der Made SM et al. Consuming a buttermilk drink containing lutein-enriched egg yolk daily for 1 year increased plasma lutein but did not affect serum lipid or lipoprotein concentrations in adults with early signs of age-related macular degeneration. 2014 J. Nutr. pmid:24991045
Hallikainen M et al. Cholesterol metabolism and serum non-cholesterol sterols: summary of 13 plant stanol ester interventions. 2014 Lipids Health Dis pmid:24766766
Mansour MP et al. Characterization of oilseed lipids from "DHA-producing Camelina sativa": a new transformed land plant containing long-chain omega-3 oils. 2014 Nutrients pmid:24566436
Schött HF et al. The relationships of phytosterols and oxyphytosterols in plasma and aortic valve cusps in patients with severe aortic stenosis. 2014 Biochem. Biophys. Res. Commun. pmid:24631689
Vrbková B et al. Determination of sterols using liquid chromatography with off-line surface-assisted laser desorption/ionization mass spectrometry. 2014 J Chromatogr A pmid:25022478
Tse TJ et al. Reconstructing long-term trends in municipal sewage discharge into a small lake in northern Manitoba, Canada. 2014 Chemosphere pmid:24405965
Leyes P et al. Effects of ezetimibe on cholesterol metabolism in HIV-infected patients with protease inhibitor-associated dyslipidemia: a single-arm intervention trial. 2014 BMC Infect. Dis. pmid:25209653
Bertolotti M et al. Age-associated alterations in cholesterol homeostasis: evidence from a cross-sectional study in a Northern Italy population. 2014 Clin Interv Aging pmid:24669190
Alvarruiz A et al. Quality and Composition of Virgin Olive Oil from Varietties Grown in Castilla-La Mancha (Spain). 2015 J Oleo Sci pmid:26369595
Mendiara I et al. Online solid-phase extraction-liquid chromatography-mass spectrometry to determine free sterols in human serum. 2015 Talanta pmid:25476366
Suttiarporn P et al. Structures of phytosterols and triterpenoids with potential anti-cancer activity in bran of black non-glutinous rice. 2015 Nutrients pmid:25756784
Zanqui AB et al. Subcritical extraction of flaxseed oil with n-propane: Composition and purity. 2015 Food Chem pmid:26041217
Mannock DA et al. A comparative calorimetric and spectroscopic study of the effects of cholesterol and of the plant sterols β-sitosterol and stigmasterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes. 2015 Biochim. Biophys. Acta pmid:25911208
Ras RT et al. The effect of a low-fat spread with added plant sterols on vascular function markers: results of the Investigating Vascular Function Effects of Plant Sterols (INVEST) study. 2015 Am. J. Clin. Nutr. pmid:25809853
Aoki K et al. Anagliptin decreases serum lathosterol level in patients with type 2 diabetes: a pilot study. 2015 Expert Opin Pharmacother pmid:26098722
Luister A et al. Increased plant sterol deposition in vascular tissue characterizes patients with severe aortic stenosis and concomitant coronary artery disease. 2015 Steroids pmid:25814070
Lin X et al. Plasma biomarker of dietary phytosterol intake. 2015 PLoS ONE pmid:25668184
Grosjean K et al. Differential effect of plant lipids on membrane organization: specificities of phytosphingolipids and phytosterols. 2015 J. Biol. Chem. pmid:25575593
Rosqvist F et al. Potential role of milk fat globule membrane in modulating plasma lipoproteins, gene expression, and cholesterol metabolism in humans: a randomized study. 2015 Am. J. Clin. Nutr. pmid:26016870
Andrade I et al. Cholesterol absorption and synthesis markers in Portuguese hypercholesterolemic adults: A cross-sectional study. 2016 Eur. J. Intern. Med. pmid:26577223
Tsukagoshi Y et al. Ajuga Δ24-Sterol Reductase Catalyzes the Direct Reductive Conversion of 24-Methylenecholesterol to Campesterol. 2016 J. Biol. Chem. pmid:26872973