22,23-dihydrobrassicasterol

22,23-dihydrobrassicasterol is a lipid of Sterol Lipids (ST) class. 22,23-dihydrobrassicasterol is associated with abnormalities such as Diabetes, Macular degeneration, Drusen, Systemic disease and Diabetes Mellitus. The involved functions are known as cholesterol metabolism, Synthesis, Intestinal Absorption, Liver function and cholesterol absorption. 22,23-dihydrobrassicasterol often locates in Back and Cell membrane. The associated genes with 22,23-dihydrobrassicasterol are apolipoprotein E-3. The related lipids are Total cholesterol, campesterol, lathosterol, Fatty Acids, Nonesterified and Cholesterol, Dietary.

Cross Reference

Introduction

To understand associated biological information of 22,23-dihydrobrassicasterol, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with 22,23-dihydrobrassicasterol?

22,23-dihydrobrassicasterol is suspected in Diabetes, Macular degeneration, Drusen, Systemic disease, Diabetes Mellitus, Liver diseases and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with 22,23-dihydrobrassicasterol

MeSH term MeSH ID Detail
Coronary Disease D003327 70 associated lipids
Hypercholesterolemia D006937 91 associated lipids
Hyperlipoproteinemia Type II D006938 22 associated lipids
Hyperlipidemias D006949 73 associated lipids
Hypolipoproteinemias D007009 9 associated lipids
Xanthomatosis D014973 17 associated lipids
Metabolic Syndrome D024821 44 associated lipids
Total 7

PubChem Associated disorders and diseases

What pathways are associated with 22,23-dihydrobrassicasterol

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with 22,23-dihydrobrassicasterol?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with 22,23-dihydrobrassicasterol?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with 22,23-dihydrobrassicasterol?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with 22,23-dihydrobrassicasterol?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with 22,23-dihydrobrassicasterol?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with 22,23-dihydrobrassicasterol

Download all related citations
Per page 10 20 50 100 | Total 313
Authors Title Published Journal PubMed Link
Miettinen TA et al. Relation of non-cholesterol sterols to coronary risk factors and carotid intima-media thickness: the Cardiovascular Risk in Young Finns Study. 2010 Atherosclerosis pmid:19963215
Kempen HJ et al. Lathosterol level in plasma is elevated in type III hyperlipoproteinemia, but not in non-type III subjects with apolipoprotein E2/2 phenotype, nor in type IIa or IIb hyperlipoproteinemia. 1991 Metab. Clin. Exp. pmid:2000034
Sharma M et al. Inhibition of sterol biosynthesis reduces tombusvirus replication in yeast and plants. 2010 J. Virol. pmid:20015981
Forchielli ML et al. The spectrum of plant and animal sterols in different oil-derived intravenous emulsions. 2010 Lipids pmid:20049583
Noto D et al. Plasma non-cholesterol sterols: a useful diagnostic tool in pediatric hypercholesterolemia. 2010 Pediatr. Res. pmid:20091938
Miettinen TA et al. Non-cholesterol sterols in serum and endarterectomized carotid arteries after a short-term plant stanol and sterol ester challenge. 2011 Nutr Metab Cardiovasc Dis pmid:20096545
Nikkilä K et al. High cholestanol and low campesterol-to-sitosterol ratio in serum of patients with primary biliary cirrhosis before liver transplantation. 1991 Hepatology pmid:2010161
Chung HY et al. Simultaneous suppression of three genes related to brassinosteroid (BR) biosynthesis altered campesterol and BR contents, and led to a dwarf phenotype in Arabidopsis thaliana. 2010 Plant Cell Rep. pmid:20169349
Han JH et al. [Comparison of the dietary phytosterols intake and serum lipids content in elderly women from three cities of China]. 2009 Zhonghua Yu Fang Yi Xue Za Zhi pmid:20193499
Silbernagel G et al. The associations of cholesterol metabolism and plasma plant sterols with all-cause and cardiovascular mortality. 2010 J. Lipid Res. pmid:20228406
van Dusseldorp M et al. Cholesterol-raising factor from boiled coffee does not pass a paper filter. 1991 May-Jun Arterioscler. Thromb. pmid:2029499
Rossard S et al. Ergosterol triggers characteristic elicitation steps in Beta vulgaris leaf tissues. 2010 J. Exp. Bot. pmid:20304987
Clément C et al. Influence of colour type and previous cultivation on secondary metabolites in hypocotyls and leaves of maca (Lepidium meyenii Walpers). 2010 J. Sci. Food Agric. pmid:20355123
Kuriyama M et al. High levels of plant sterols and cholesterol precursors in cerebrotendinous xanthomatosis. 1991 J. Lipid Res. pmid:2066659
Hang J and Dussault P A concise synthesis of beta-sitosterol and other phytosterols. 2010 Steroids pmid:20685279
Lupattelli G et al. Non-cholesterol sterols in different forms of primary hyperlipemias. 2012 Nutr Metab Cardiovasc Dis pmid:20708389
Okada K et al. Lipid-lowering effects of ezetimibe for hypercholesterolemic patients with and without type 2 diabetes mellitus. 2010 Endocr. J. pmid:20733267
Shay CM et al. Do plant sterol concentrations correlate with coronary artery disease in type 1 diabetes? A report from the Pittsburgh Epidemiology of Diabetes Complications Study. 2009 J Diabetes pmid:20827426
Hattori S and Hattori Y Efficacy and safety of ezetimibe in patients undergoing hemodialysis. 2010 Endocr. J. pmid:20885068
Neil HA et al. Impact of atorvastatin and omega-3 ethyl esters 90 on plasma plant sterol concentrations and cholesterol synthesis in type 2 diabetes: a randomised placebo controlled factorial trial. 2010 Atherosclerosis pmid:21036355