22,23-dihydrobrassicasterol

22,23-dihydrobrassicasterol is a lipid of Sterol Lipids (ST) class. 22,23-dihydrobrassicasterol is associated with abnormalities such as Diabetes, Macular degeneration, Drusen, Systemic disease and Diabetes Mellitus. The involved functions are known as cholesterol metabolism, Synthesis, Intestinal Absorption, Liver function and cholesterol absorption. 22,23-dihydrobrassicasterol often locates in Back and Cell membrane. The associated genes with 22,23-dihydrobrassicasterol are apolipoprotein E-3. The related lipids are Total cholesterol, campesterol, lathosterol, Fatty Acids, Nonesterified and Cholesterol, Dietary.

Cross Reference

Introduction

To understand associated biological information of 22,23-dihydrobrassicasterol, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with 22,23-dihydrobrassicasterol?

22,23-dihydrobrassicasterol is suspected in Diabetes, Macular degeneration, Drusen, Systemic disease, Diabetes Mellitus, Liver diseases and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with 22,23-dihydrobrassicasterol

MeSH term MeSH ID Detail
Coronary Disease D003327 70 associated lipids
Hypercholesterolemia D006937 91 associated lipids
Hyperlipoproteinemia Type II D006938 22 associated lipids
Hyperlipidemias D006949 73 associated lipids
Hypolipoproteinemias D007009 9 associated lipids
Xanthomatosis D014973 17 associated lipids
Metabolic Syndrome D024821 44 associated lipids
Total 7

PubChem Associated disorders and diseases

What pathways are associated with 22,23-dihydrobrassicasterol

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with 22,23-dihydrobrassicasterol?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with 22,23-dihydrobrassicasterol?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with 22,23-dihydrobrassicasterol?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with 22,23-dihydrobrassicasterol?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with 22,23-dihydrobrassicasterol?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with 22,23-dihydrobrassicasterol

Download all related citations
Per page 10 20 50 100 | Total 313
Authors Title Published Journal PubMed Link
O'Callaghan Y et al. Synthesis and assessment of the relative toxicity of the oxidised derivatives of campesterol and dihydrobrassicasterol in U937 and HepG2 cells. 2013 Biochimie pmid:22561884
Takahashi K et al. Metabolic conversion of 24-methyl-Delta25-cholesterol to 24-methylcholesterol in higher plants. 2006 Bioorg. Med. Chem. pmid:16213729
Sakurai A and Fujioka S Studies on biosynthesis of brassinosteroids. 1997 Biosci. Biotechnol. Biochem. pmid:9178548
Hallikainen M et al. Short-term LDL cholesterol-lowering efficacy of plant stanol esters. 2002 BMC Cardiovasc Disord pmid:12197945
Belayachi L et al. Retama monosperma n-hexane extract induces cell cycle arrest and extrinsic pathway-dependent apoptosis in Jurkat cells. 2014 BMC Complement Altern Med pmid:24460687
Renner O et al. Role of the ABCG8 19H risk allele in cholesterol absorption and gallstone disease. 2013 BMC Gastroenterol pmid:23406058
Leyes P et al. Effects of ezetimibe on cholesterol metabolism in HIV-infected patients with protease inhibitor-associated dyslipidemia: a single-arm intervention trial. 2014 BMC Infect. Dis. pmid:25209653
Klett EL et al. A mouse model of sitosterolemia: absence of Abcg8/sterolin-2 results in failure to secrete biliary cholesterol. 2004 BMC Med pmid:15040800
Laitinen K et al. Plant stanol ester spreads as components of a balanced diet for pregnant and breast-feeding women: evaluation of clinical safety. 2009 Br. J. Nutr. pmid:19017423
Nissinen MJ et al. Responses of surrogate markers of cholesterol absorption and synthesis to changes in cholesterol metabolism during various amounts of fat and cholesterol feeding among healthy men. 2008 Br. J. Nutr. pmid:17697430