18alpha-glycyrrhetinic acid

18alpha-glycyrrhetinic acid is a lipid of Prenol Lipids (PR) class. 18alpha-glycyrrhetinic acid is associated with abnormalities such as Wiskott-Aldrich Syndrome. The involved functions are known as inhibitors, salivary gland development and branching morphogenesis.

Cross Reference

Introduction

To understand associated biological information of 18alpha-glycyrrhetinic acid, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with 18alpha-glycyrrhetinic acid?

18alpha-glycyrrhetinic acid is suspected in and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

No disease MeSH terms mapped to the current reference collection.

PubChem Associated disorders and diseases

What pathways are associated with 18alpha-glycyrrhetinic acid

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with 18alpha-glycyrrhetinic acid?

There are no associated biomedical information in the current reference collection.

What functions are associated with 18alpha-glycyrrhetinic acid?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with 18alpha-glycyrrhetinic acid?

There are no associated biomedical information in the current reference collection.

What genes are associated with 18alpha-glycyrrhetinic acid?

There are no associated biomedical information in the current reference collection.

What common seen animal models are associated with 18alpha-glycyrrhetinic acid?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with 18alpha-glycyrrhetinic acid

Download all related citations
Per page 10 20 50 100 | Total 209
Authors Title Published Journal PubMed Link
Yamada A et al. Connexin 43 Is Necessary for Salivary Gland Branching Morphogenesis and FGF10-induced ERK1/2 Phosphorylation. 2016 J. Biol. Chem. pmid:26565022
Takeuchi R et al. Possible pharmacotherapy for nifedipine-induced gingival overgrowth: 18α-glycyrrhetinic acid inhibits human gingival fibroblast growth. 2016 Br. J. Pharmacol. pmid:26676684
Zhou J et al. 18β-glycyrrhetinic acid suppresses experimental autoimmune encephalomyelitis through inhibition of microglia activation and promotion of remyelination. 2015 Sci Rep pmid:26329786
Zhang H et al. Structural basis for 18-β-glycyrrhetinic acid as a novel non-GSH analog glyoxalase I inhibitor. 2015 Acta Pharmacol. Sin. pmid:26279158
Kitagawa H et al. Pharmacokinetics of Active Components of Yokukansan, a Traditional Japanese Herbal Medicine after a Single Oral Administration to Healthy Japanese Volunteers: A Cross-Over, Randomized Study. 2015 PLoS ONE pmid:26151135
Qu Y et al. Effects of 18α-glycyrrhizin on TGF-β1/Smad signaling pathway in rats with carbon tetrachloride-induced liver fibrosis. 2015 Int J Clin Exp Pathol pmid:25973013
Gupta P et al. Antileishmanial effect of 18β-glycyrrhetinic acid is mediated by Toll-like receptor-dependent canonical and noncanonical p38 activation. 2015 Antimicrob. Agents Chemother. pmid:25691644
Kuzma-Kuzniarska M et al. Functional assessment of gap junctions in monolayer and three-dimensional cultures of human tendon cells using fluorescence recovery after photobleaching. 2014 J Biomed Opt pmid:24390370
Jay M et al. Effects of nitric oxide on neuromuscular properties of developing zebrafish embryos. 2014 PLoS ONE pmid:24489806
Wong PS et al. Sex differences in endothelial function in porcine coronary arteries: a role for H2O2 and gap junctions? 2014 Br. J. Pharmacol. pmid:24467384