2,5-diaminopentanoic acid

2,5-diaminopentanoic acid is a lipid of Fatty Acyls (FA) class. The involved functions are known as Vasodilation, Intestinal Absorption and Pinocytosis. 2,5-diaminopentanoic acid often locates in Mitochondria, Microfilaments, NADH dehydrogenase complex and respiratory chain complex III location sensu Eukarya. The associated genes with 2,5-diaminopentanoic acid are GAPDH gene and iberiotoxin.

Cross Reference

Introduction

To understand associated biological information of 2,5-diaminopentanoic acid, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with 2,5-diaminopentanoic acid?

There are no associated biomedical information in the current reference collection.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with 2,5-diaminopentanoic acid

MeSH term MeSH ID Detail
Uremia D014511 33 associated lipids
Stomach Ulcer D013276 75 associated lipids
Kidney Failure, Chronic D007676 51 associated lipids
Diabetes Mellitus D003920 90 associated lipids
Adenocarcinoma D000230 166 associated lipids
Lupus Erythematosus, Systemic D008180 43 associated lipids
Lung Neoplasms D008175 171 associated lipids
Wounds and Injuries D014947 20 associated lipids
Burns D002056 34 associated lipids
Adenoma, Islet Cell D007516 7 associated lipids
Per page 10 20 50 100 | Total 172

PubChem Associated disorders and diseases

What pathways are associated with 2,5-diaminopentanoic acid

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with 2,5-diaminopentanoic acid?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with 2,5-diaminopentanoic acid?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with 2,5-diaminopentanoic acid?

There are no associated biomedical information in the current reference collection.

What genes are associated with 2,5-diaminopentanoic acid?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with 2,5-diaminopentanoic acid?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with 2,5-diaminopentanoic acid

Download all related citations
Per page 10 20 50 100 | Total 4676
Authors Title Published Journal PubMed Link
Zhang X et al. High-level expression of human arginase I in Pichia pastoris and its immobilization on chitosan to produce L-ornithine. 2015 BMC Biotechnol. pmid:26227111
LeMoine CM and Walsh PJ Evolution of urea transporters in vertebrates: adaptation to urea's multiple roles and metabolic sources. 2015 J. Exp. Biol. pmid:26085670
Sakanaka A et al. Arginine-Ornithine Antiporter ArcD Controls Arginine Metabolism and Interspecies Biofilm Development of Streptococcus gordonii. 2015 J. Biol. Chem. pmid:26085091
Horibata S et al. Utilization of the Soft Agar Colony Formation Assay to Identify Inhibitors of Tumorigenicity in Breast Cancer Cells. 2015 J Vis Exp pmid:26067809
AbdElgawad H et al. Grassland species differentially regulate proline concentrations under future climate conditions: an integrated biochemical and modelling approach. 2015 New Phytol. pmid:26037253
Coutelier M et al. Alteration of ornithine metabolism leads to dominant and recessive hereditary spastic paraplegia. 2015 Brain pmid:26026163
Costa IA et al. Recombinant interleukin-1β dilates steelhead trout coronary microvessels: effect of temperature and role of the endothelium, nitric oxide and prostaglandins. 2015 J. Exp. Biol. pmid:26026045
Scott JA et al. Plasma arginine metabolites reflect airway dysfunction in a murine model of allergic airway inflammation. 2015 J. Appl. Physiol. pmid:25979935
Zou XY et al. Glyoxalase I is differentially expressed in cutaneous neoplasms and contributes to the progression of squamous cell carcinoma. 2015 J. Invest. Dermatol. pmid:25184957
Jourdan M et al. Citrulline stimulates muscle protein synthesis in the post-absorptive state in healthy people fed a low-protein diet - A pilot study. 2015 Clin Nutr pmid:24972455