2,5-diaminopentanoic acid

2,5-diaminopentanoic acid is a lipid of Fatty Acyls (FA) class. The involved functions are known as Vasodilation, Intestinal Absorption and Pinocytosis. 2,5-diaminopentanoic acid often locates in Mitochondria, Microfilaments, NADH dehydrogenase complex and respiratory chain complex III location sensu Eukarya. The associated genes with 2,5-diaminopentanoic acid are GAPDH gene and iberiotoxin.

Cross Reference

Introduction

To understand associated biological information of 2,5-diaminopentanoic acid, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with 2,5-diaminopentanoic acid?

There are no associated biomedical information in the current reference collection.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with 2,5-diaminopentanoic acid

MeSH term MeSH ID Detail
Uremia D014511 33 associated lipids
Stomach Ulcer D013276 75 associated lipids
Kidney Failure, Chronic D007676 51 associated lipids
Diabetes Mellitus D003920 90 associated lipids
Adenocarcinoma D000230 166 associated lipids
Lupus Erythematosus, Systemic D008180 43 associated lipids
Lung Neoplasms D008175 171 associated lipids
Wounds and Injuries D014947 20 associated lipids
Burns D002056 34 associated lipids
Adenoma, Islet Cell D007516 7 associated lipids
Per page 10 20 50 100 | Total 172

PubChem Associated disorders and diseases

What pathways are associated with 2,5-diaminopentanoic acid

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with 2,5-diaminopentanoic acid?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with 2,5-diaminopentanoic acid?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with 2,5-diaminopentanoic acid?

There are no associated biomedical information in the current reference collection.

What genes are associated with 2,5-diaminopentanoic acid?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with 2,5-diaminopentanoic acid?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with 2,5-diaminopentanoic acid

Download all related citations
Per page 10 20 50 100 | Total 4676
Authors Title Published Journal PubMed Link
Xu QY et al. Metabolomic analysis of simvastatin and fenofibrate intervention in high-lipid diet-induced hyperlipidemia rats. 2014 Acta Pharmacol. Sin. pmid:25220639
McNamara TC et al. Endothelial nitric oxide synthase mediates the nitric oxide component of reflex cutaneous vasodilatation during dynamic exercise in humans. 2014 J. Physiol. (Lond.) pmid:25260636
Kristiansen RG et al. L-Ornithine phenylacetate reduces ammonia in pigs with acute liver failure through phenylacetylglycine formation: a novel ammonia-lowering pathway. 2014 Am. J. Physiol. Gastrointest. Liver Physiol. pmid:25258408
Menon BR et al. A conformational sampling model for radical catalysis in pyridoxal phosphate- and cobalamin-dependent enzymes. 2014 J. Biol. Chem. pmid:25213862
Leiss V et al. Insulin secretion stimulated by L-arginine and its metabolite L-ornithine depends on Gα(i2). 2014 Am. J. Physiol. Endocrinol. Metab. pmid:25205820
Ladeuix B et al. Underestimated contribution of skeletal muscle in ornithine metabolism during mouse postnatal development. 2014 Amino Acids pmid:24221352
Cooper JD et al. Identification of a positively charged platform in Staphylococcus aureus HtsA that is essential for ferric staphyloferrin A transport. 2014 Biochemistry pmid:25050909
Lange S et al. Peptidylarginine deiminases: novel drug targets for prevention of neuronal damage following hypoxic ischemic insult (HI) in neonates. 2014 J. Neurochem. pmid:24762056
Kui B et al. Recent advances in the investigation of pancreatic inflammation induced by large doses of basic amino acids in rodents. 2014 Lab. Invest. pmid:24365745
Li ST et al. Endothelial nitric oxide synthase protects neurons against ischemic injury through regulation of brain-derived neurotrophic factor expression. 2014 CNS Neurosci Ther pmid:24397751