3-Methyl-2-oxobutanoic acid

3-Methyl-2-oxobutanoic acid is a lipid of Fatty Acyls (FA) class. 3-methyl-2-oxobutanoic acid is associated with abnormalities such as Maple Syrup Urine Disease and Kidney Failure, Chronic. The involved functions are known as Phosphorylation, Citric Acid Cycle, inhibitors, Process and Metabolic Control. 3-methyl-2-oxobutanoic acid often locates in Mitochondria, BL21, Cytoplasm, Ribosomes and Head. The associated genes with 3-Methyl-2-oxobutanoic acid are Genome, Homologous Gene, Operon, Alleles and Oxidoreductase Gene. The related lipids are dimyristoylphosphatidylglycerol, 9-oxononanoic acid, Valerates and alpha-ketocaproic acid.

Cross Reference

Introduction

To understand associated biological information of 3-Methyl-2-oxobutanoic acid, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with 3-Methyl-2-oxobutanoic acid?

3-Methyl-2-oxobutanoic acid is suspected in Maple Syrup Urine Disease, Kidney Failure, Chronic and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with 3-Methyl-2-oxobutanoic acid

MeSH term MeSH ID Detail
Uremia D014511 33 associated lipids
Kidney Failure, Chronic D007676 51 associated lipids
Diabetes Mellitus D003920 90 associated lipids
Ketosis D007662 13 associated lipids
Body Weight D001835 333 associated lipids
Carbon Tetrachloride Poisoning D002252 12 associated lipids
Coronary Disease D003327 70 associated lipids
Prostatic Neoplasms D011471 126 associated lipids
Weight Gain D015430 101 associated lipids
Glioma D005910 112 associated lipids
Per page 10 20 50 | Total 31

PubChem Associated disorders and diseases

What pathways are associated with 3-Methyl-2-oxobutanoic acid

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with 3-Methyl-2-oxobutanoic acid?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with 3-Methyl-2-oxobutanoic acid?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with 3-Methyl-2-oxobutanoic acid?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with 3-Methyl-2-oxobutanoic acid?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with 3-Methyl-2-oxobutanoic acid?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with 3-Methyl-2-oxobutanoic acid

Download all related citations
Per page 10 20 50 100 | Total 726
Authors Title Published Journal PubMed Link
Saylor PJ et al. Prospective study of changes in the metabolomic profiles of men during their first three months of androgen deprivation therapy for prostate cancer. 2012 Clin. Cancer Res. pmid:22589396
Jia X et al. Engineering a metabolic pathway for isobutanol biosynthesis in Bacillus subtilis. 2012 Appl. Biochem. Biotechnol. pmid:21537892
Hu W et al. Selective editing of Val and Leu methyl groups in high molecular weight protein NMR. 2012 J. Biomol. NMR pmid:22532128
Qu SQ et al. [Acute encephalopathy due to late-onset maple syrup urine disease in a school boy]. 2012 Zhongguo Dang Dai Er Ke Za Zhi pmid:22433398
Chanumolu SK et al. UniDrug-target: a computational tool to identify unique drug targets in pathogenic bacteria. 2012 PLoS ONE pmid:22431985
Xiong M et al. A bio-catalytic approach to aliphatic ketones. 2012 Sci Rep pmid:22416247
van den Akker CH et al. Amino acid metabolism in the human fetus at term: leucine, valine, and methionine kinetics. 2011 Pediatr. Res. pmid:21857387
Zhang W et al. The fur transcription regulator and fur-regulated genes in Clostridium botulinum A ATCC 3502. 2011 J. Biomed. Biotechnol. pmid:22203788
Chung JH et al. Proteomic and biochemical analyses reveal the activation of unfolded protein response, ERK-1/2 and ribosomal protein S6 signaling in experimental autoimmune myocarditis rat model. 2011 BMC Genomics pmid:22014063
Lowe CD et al. The transcriptome of the novel dinoflagellate Oxyrrhis marina (Alveolata: Dinophyceae): response to salinity examined by 454 sequencing. 2011 BMC Genomics pmid:22014029